FPGA on Cyber-Physical Systems for the Implementation of Internet of Things

Author(s):  
Rajit Nair ◽  
Preeti Nair ◽  
Vidya Kant Dwivedi

Today, in cyber-physical systems, there is a transformation in which processing has been done on distributed mode rather than performing on centralized manner. Usually this type of approach is known as Edge computing, which demands hardware time to time when requirements in computing performance get increased. Considering this situation, we must remain energy efficient and adaptable. So, to meet the above requirements, SRAM-based FPGAs and their inherent run-time reconfigurability are integrated with smart power management strategies. Sometimes this approach fails in the case of user accessibility and easy development. This chapter presents an integrated framework to develop FPGA-based high-performance embedded systems for Edge computing in cyber-physical systems. The processing architecture will be based on hardware that helps us to manage reconfigurable systems from high level systems without any human intervention.

Sensors ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 1877 ◽  
Author(s):  
Alfonso Rodríguez ◽  
Juan Valverde ◽  
Jorge Portilla ◽  
Andrés Otero ◽  
Teresa Riesgo ◽  
...  

2019 ◽  
Vol 1 (2) ◽  
pp. 19-37
Author(s):  
K. Sridhar Patnaik ◽  
Itu Snigdh

Cyber-physical systems (CPS) is an exciting emerging research area that has drawn the attention of many researchers. However, the difficulties of computing and physical paradigm introduce a lot of trials while developing CPS, such as incorporation of heterogeneous physical entities, system verification, security assurance, and so on. A common or unified architecture plays an important role in the process of CPS design. This article introduces the architectural modeling representation of CPS. The layers of models are integrated from high level to lower level to get the general Meta model. Architecture captures the essential attributes of a CPS. Despite the rapid growth in IoT and CPS a general principled modeling approach for the systematic development of these new engineering systems is still missing. System modeling is one of the important aspects of developing abstract models of a system wherein, each model represents a different view or perspective of that system. With Unified Modeling Language (UML), the graphical analogy of such complex systems can be successfully presented.


2021 ◽  
Author(s):  
Yu Zheng ◽  
Ali Sayghe ◽  
Olugbenga Anubi

<div>This paper presents a suite of algorithms for detecting and localizing attacks in cyber-physical systems, and performing improved resilient state estimation through a pruning algorithm. High performance rates for the underlying detection and localization algorithms are achieved by generating training data that cover large region of the attack space. An unsupervised generative model trained by physics-based discriminators is designed to generate successful false data injection attacks. Then the generated adversarial examples are used to train a multi-class deep neural network which detects and localizes the attacks on measurements. Next, a pruning algorithm is included to improve the precision of localization result and provide performance guarantees for the resulting resilient observer. The performance of the proposed method is validated using the numerical simulation of a water distribution cyber-physical system.</div>


2021 ◽  
Author(s):  
Yu Zheng ◽  
Ali Sayghe ◽  
Olugbenga Anubi

<div>This paper presents a suite of algorithms for detecting and localizing attacks in cyber-physical systems, and performing improved resilient state estimation through a pruning algorithm. High performance rates for the underlying detection and localization algorithms are achieved by generating training data that cover large region of the attack space. An unsupervised generative model trained by physics-based discriminators is designed to generate successful false data injection attacks. Then the generated adversarial examples are used to train a multi-class deep neural network which detects and localizes the attacks on measurements. Next, a pruning algorithm is included to improve the precision of localization result and provide performance guarantees for the resulting resilient observer. The performance of the proposed method is validated using the numerical simulation of a water distribution cyber-physical system.</div>


IEEE Network ◽  
2020 ◽  
Vol 34 (3) ◽  
pp. 16-22 ◽  
Author(s):  
Tian Wang ◽  
Yuzhu Liang ◽  
Yi Yang ◽  
Guangquan Xu ◽  
Hao Peng ◽  
...  

Author(s):  
Felician Campean ◽  
Daniel Neagu ◽  
Aleksandr Doikin ◽  
Morteza Soleimani ◽  
Thomas Byrne ◽  
...  

AbstractUnderpinned by a contemporary view of automotive systems as cyber-physical systems, characterised by progressively open architectures increasingly defined by their interaction with the users and the smart environment, this paper provides a critical and up-to-date review of automotive Integrated Vehicle Health Management (IVHM) systems. The paper discusses the challenges with prognostics and intelligent health management of automotive systems, and proposes a high-level framework, referred to as the Automotive Healthcare Analytic Factory, to systematically collect and process heterogeneous data from across the product lifecycle, towards actionable insight for personalised healthcare of systems.


Sign in / Sign up

Export Citation Format

Share Document