Synaestesia

Author(s):  
Eliezer Geisler

A good portion of brain research has been directed towards its anomalies, and mental illnesses that result from them. Examples include Alzheimer’s disease and synaesthia.1 This is due partly to the desire of researchers to assist in understanding diseases and hastening cures for them, and partly because the study of anomalies is a better way to understand how complex systems such as the human brain actually function (Harrison, 2001).

2021 ◽  
pp. 1-14
Author(s):  
Pan Liu ◽  
Qian Yang ◽  
Ning Yu ◽  
Yan Cao ◽  
Xue Wang ◽  
...  

Background: Alzheimer’s disease (AD) is one of the most challenging diseases causing an increasing burden worldwide. Although the neuropathologic diagnosis of AD has been established for many years, the metabolic changes in neuropathologic diagnosed AD samples have not been fully investigated. Objective: To elucidate the potential metabolism dysregulation in the postmortem human brain samples assessed by AD related pathological examination. Methods: We performed untargeted and targeted metabolomics in 44 postmortem human brain tissues. The metabolic differences in the hippocampus between AD group and control (NC) group were compared. Results: The results show that a pervasive metabolic dysregulation including phenylalanine metabolism, valine, leucine, and isoleucine biosynthesis, biotin metabolism, and purine metabolism are associated with AD pathology. Targeted metabolomics reveal that phenylalanine, phenylpyruvic acid, and N-acetyl-L-phenylalanine are upregulated in AD samples. In addition, the enzyme IL-4I1 catalyzing transformation from phenylalanine to phenylpyruvic acid is also upregulated in AD samples. Conclusion: There is a pervasive metabolic dysregulation in hippocampus with AD-related pathological changes. Our study suggests that the dysregulation of phenylalanine metabolism in hippocampus may be an important pathogenesis for AD pathology formation.


2008 ◽  
Vol 4 ◽  
pp. T633-T634
Author(s):  
Ivica Granic ◽  
Csaba Nyakas ◽  
Gabor G. Kovacs ◽  
Paul G.M. Luiten ◽  
Ulrich L.M. Eisel

2018 ◽  
Vol 99 (7) ◽  
pp. 1056-1067
Author(s):  
C. Dirk Keene ◽  
Angela M. Wilson ◽  
Mitchell D. Kilgore ◽  
Lauren T. Bruner ◽  
Nadia O. Postupna ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12181
Author(s):  
Guido Santos ◽  
Mario Díaz

Alzheimer’s disease (AD) is a neurodegenerative disease caused by abnormal functioning of critical physiological processes in nerve cells and aberrant accumulation of protein aggregates in the brain. The initial cause remains elusive—the only unquestionable risk factor for the most frequent variant of the disease is age. Lipid rafts are microdomains present in nerve cell membranes and they are known to play a significant role in the generation of hallmark proteinopathies associated to AD, namely senile plaques, formed by aggregates of amyloid β peptides. Recent studies have demonstrated that human brain cortex lipid rafts are altered during early neuropathological phases of AD as defined by Braak and Braak staging. The lipid composition and physical properties of these domains appear altered even before clinical symptoms are detected. Here, we use a coarse grain molecular dynamics mathematical model to predict the dimensional evolution of these domains using the experimental data reported by our group in human frontal cortex. The model predicts significant size and frequency changes which are detectable at the earliest neuropathological stage (ADI/II) of Alzheimer’s disease. Simulations reveal a lower number and a larger size in lipid rafts from ADV/VI, the most advanced stage of AD. Paralleling these changes, the predictions also indicate that non-rafts domains undergo simultaneous alterations in membrane peroxidability, which support a link between oxidative stress and AD progression. These synergistic changes in lipid rafts dimensions and non-rafts peroxidability are likely to become part of a positive feedback loop linked to an irreversible amyloid burden and neuronal death during the evolution of AD neuropathology.


Author(s):  
Alba Naudí ◽  
Rosanna Cabré ◽  
Mariona Jové ◽  
Victoria Ayala ◽  
Hugo Gonzalo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document