scholarly journals Determining Action Reversibility in STRIPS Using Answer Set and Epistemic Logic Programming

Author(s):  
WOLFGANG FABER ◽  
MICHAEL MORAK ◽  
LUKÁŠ CHRPA

Abstract In the context of planning and reasoning about actions and change, we call an action reversible when its effects can be reverted by applying other actions, returning to the original state. Renewed interest in this area has led to several results in the context of the PDDL language, widely used for describing planning tasks. In this paper, we propose several solutions to the computational problem of deciding the reversibility of an action. In particular, we leverage an existing translation from PDDL to Answer Set Programming (ASP), and then use several different encodings to tackle the problem of action reversibility for the STRIPS fragment of PDDL. For these, we use ASP, as well as Epistemic Logic Programming (ELP), an extension of ASP with epistemic operators, and compare and contrast their strengths and weaknesses.

Author(s):  
Tobias Kaminski ◽  
Thomas Eiter ◽  
Katsumi Inoue

Meta-Interpretive Learning (MIL) is a recent approach for Inductive Logic Programming (ILP) implemented in Prolog. Alternatively, MIL-problems can be solved by using Answer Set Programming (ASP), which may result in performance gains due to efficient conflict propagation. However, a straightforward MIL-encoding results in a huge size of the ground program and search space. To address these challenges, we encode MIL in the HEX-extension of ASP, which mitigates grounding issues, and we develop novel pruning techniques.


2009 ◽  
pp. 2261-2267
Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

Updates, is a central issue in relational databases and knowledge databases. In the last years, it has been well studied in the non-monotonic reasoning paradigm. Several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997), (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). However, recently a set of proposals has been characterized to propose mechanisms of updates based on logic and logic programming. All these mechanisms are built on semantics based on structural properties (Eiter, Fink, Sabattini & Thompits, 2000) (Leite, 2002) (Banti, Alferes & Brogi, 2003) (Zacarias, 2005). Furthermore, all these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in(De Schreye, Hermenegildo, & Pereira, 1999).


2018 ◽  
Vol 19 (2) ◽  
pp. 262-289 ◽  
Author(s):  
ELIAS MARCOPOULOS ◽  
YUANLIN ZHANG

AbstractRecent progress in logic programming (e.g. the development of the answer set programming (ASP) paradigm) has made it possible to teach it to general undergraduate and even middle/high school students. Given the limited exposure of these students to computer science, the complexity of downloading, installing, and using tools for writing logic programs could be a major barrier for logic programming to reach a much wider audience. We developed onlineSPARC, an online ASP environment with a self-contained file system and a simple interface. It allows users to type/edit logic programs and perform several tasks over programs, including asking a query to a program, getting the answer sets of a program, and producing a drawing/animation based on the answer sets of a program.


10.29007/ngm2 ◽  
2018 ◽  
Author(s):  
Gopal Gupta ◽  
Elmer Salazar ◽  
Kyle Marple ◽  
Zhuo Chen ◽  
Farhad Shakerin

Answer Set Programming (ASP) has emerged as a successful paradigm for developing intelligent applications. ASP is based on adding negation as failure to logic programming under the stable model semantics regime. ASP allows for sophisticated reasoning mechanisms that are employed by humans to be modeled elegantly. We argue that being able to model common sense reasoning as used by humans is critical for success of automated reasoning. We also argue that extending answer programming systems to general predicates is critical to realizing the full power of ASP. Goal-directed predicate ASP systems are needed to make the ASP technology practical for building large, scalable knowledge-based applications.


2019 ◽  
Vol 20 (2) ◽  
pp. 176-204 ◽  
Author(s):  
MARTIN GEBSER ◽  
MARCO MARATEA ◽  
FRANCESCO RICCA

AbstractAnswer Set Programming (ASP) is a prominent knowledge representation language with roots in logic programming and non-monotonic reasoning. Biennial ASP competitions are organized in order to furnish challenging benchmark collections and assess the advancement of the state of the art in ASP solving. In this paper, we report on the design and results of the Seventh ASP Competition, jointly organized by the University of Calabria (Italy), the University of Genova (Italy), and the University of Potsdam (Germany), in affiliation with the 14th International Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR 2017).


Author(s):  
Wolfgang Faber ◽  
Michael Morak ◽  
Stefan Woltran

Epistemic Logic Programs (ELPs), that is, Answer Set Programming (ASP) extended with epistemic operators, have received renewed interest in recent years, which led to a flurry of new research, as well as efficient solvers. An important question is under which conditions a sub-program can be replaced by another one without changing the meaning, in any context. This problem is known as strong equivalence, and is well-studied for ASP. For ELPs, this question has been approached by embedding them into epistemic extensions of equilibrium logics. In this paper, we consider a simpler, more direct characterization that is directly applicable to the language used in state-of-the-art ELP solvers. This also allows us to give tight complexity bounds, showing that strong equivalence for ELPs remains coNP-complete, as for ASP. We further use our results to provide syntactic characterizations for tautological rules and rule subsumption for ELPs.


2019 ◽  
Vol 19 (04) ◽  
pp. 603-628 ◽  
Author(s):  
FRANCESCO CALIMERI ◽  
SIMONA PERRI ◽  
JESSICA ZANGARI

AbstractAnswer Set Programming (ASP) is a purely declarative formalism developed in the field of logic programming and non-monotonic reasoning: computational problems are encoded by logic programs whose answer sets, corresponding to solutions, are computed by an ASP system. Different, semantically equivalent, programs can be defined for the same problem; however, performance of systems evaluating them might significantly vary. We propose an approach for automatically transforming an input logic program into an equivalent one that can be evaluated more efficiently. One can make use of existing tree-decomposition techniques for rewriting selected rules into a set of multiple ones; the idea is to guide and adaptively apply them on the basis of proper new heuristics, to obtain a smart rewriting algorithm to be integrated into an ASP system. The method is rather general: it can be adapted to any system and implement different preference policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one of the main phases of the ASP computation; we use them in order to implement the approach into the ASP systemDLV, in particular into its grounding subsystemℐ-DLV, and carry out an extensive experimental activity for assessing the impact of the proposal.


Author(s):  
Marcello Balduccini ◽  
Michael Gelfond ◽  
Enrico Pontelli ◽  
Tran Cao Son

The paper proposes a framework for capturing how an agent’s beliefs evolve over time in response to observations and for answering the question of whether statements made by a third party can be believed. The basic components of the framework are a formalism for reasoning about actions, changes, and observations and a formalism for default reasoning. The paper describes a concrete implementation that leverages answer set programming for determining the evolution of an agent's ``belief state'', based on observations, knowledge about the effects of actions, and a theory about how these influence an agent's beliefs. The beliefs are then used to assess whether statements made by a third party can be accepted as truthful. The paper investigates an application of the proposed framework in the detection of man-in-the-middle attacks targeting computers and cyber-physical systems. Finally, we briefly discuss related work and possible extensions.


2006 ◽  
Vol 6 (5) ◽  
pp. 559-607 ◽  
Author(s):  
TRAN CAO SON ◽  
ENRICO PONTELLI

We present a declarative language, ${\cal PP}$, for the high-level specification of preferences between possible solutions (or trajectories) of a planning problem. This novel language allows users to elegantly express non-trivial, multi-dimensional preferences and priorities over such preferences. The semantics of ${\cal PP}$ allows the identification of most preferred trajectories for a given goal. We also provide an answer set programming implementation of planning problems with ${\cal PP}$ preferences.


Author(s):  
Fernando Zacarías Flores ◽  
Dionicio Zacarías Flores ◽  
Rosalba Cuapa Canto ◽  
Luis Miguel Guzmán Muñoz

Updates, is a central issue in relational databases and knowledge databases. In the last years, it has been well studied in the non-monotonic reasoning paradigm. Several semantics for logic program updates have been proposed (Brewka, Dix, & Knonolige 1997), (De Schreye, Hermenegildo, & Pereira, 1999) (Katsumo & Mendelzon, 1991). However, recently a set of proposals has been characterized to propose mechanisms of updates based on logic and logic programming. All these mechanisms are built on semantics based on structural properties (Eiter, Fink, Sabattini & Thompits, 2000) (Leite, 2002) (Banti, Alferes & Brogi, 2003) (Zacarias, 2005). Furthermore, all these semantic ones coincide in considering the AGM proposal as the standard model in the update theory, for their wealth in properties. The AGM approach, introduced in (Alchourron, Gardenfors & Makinson, 1985) is the dominating paradigm in the area, but in the context of monotonic logic. All these proposals analyze and reinterpret the AGM postulates under the Answer Set Programming (ASP) such as (Eiter, Fink, Sabattini & Thompits, 2000). However, the majority of the adapted AGM and update postulates are violated by update programs, as shown in (De Schreye, Hermenegildo, & Pereira, 1999).


Sign in / Sign up

Export Citation Format

Share Document