mTrigger

Author(s):  
Ling Liu ◽  
Bhuvan Bamba ◽  
Myungcheol Doo ◽  
Peter Pesti ◽  
Matt Weber

Location-based triggers are the fundamental capability for supporting location-based advertisements, location-based entertainment applications, personal reminders, as well as presence-based information sharing applications. In this chapter, we describe the design and the implementation of mTrigger, an event-based framework for scalable processing of location-based mobile triggers (location triggers for short). A location trigger is a standing spatial trigger specified with the spatial region over which the trigger is set, the actions to be taken when the trigger conditions are met, and the list of recipients to whom the notification will be sent upon the firing of the location trigger. The mTrigger framework consists of three alternative architectures for supporting location triggers: (1) the client-server architecture, which allows mobile clients to register and install location triggers of interest on the mTrigger server system; the server being responsible for processing location triggers, performing associated actions and sending out notifications upon firing of triggers; (2) the client-centric architecture, which enables mobile users to manage and process location triggers on their own mobile clients; and (3) the decentralized peer-to-peer architecture, which allows mobile users to collaborate with one another in terms of location trigger processing. The server-centric architecture is particularly suitable for supporting public and shared location triggers, enabling effective sharing of location trigger processing among multiple users. The client-centric architecture is more suitable for users possessing mobile clients with high computational capacity and more sensitive to the location privacy of their location triggers. The decentralized peer-to-peer architecture provides on-demand and opportunistic collaboration in terms of location trigger evaluation. Clearly, the performance optimizations for server-centric architecture should focus on efficient and scalable processing of location triggers by reducing the bandwidth consumption and the amount of redundant computation at the server; whereas, the performance optimizations for client-centric architecture and decentralized architecture should also take into account energy efficiency of mobile clients in addition to computational efficiency. In addition, processing of location triggers with moving target of interest requires the knowledge of position information of the moving target and may not be suitable for the client-centric architecture. This chapter will describe the design principles and the performance optimization techniques of the mTrigger framework, including a suite of energy-efficient spatial trigger grouping techniques for optimizing both wake-up times and check times of location trigger evaluations.

2021 ◽  
Vol 13 (7) ◽  
pp. 1262
Author(s):  
Leyi Shi ◽  
Shanshan Du ◽  
Yifan Miao ◽  
Songbai Lan

With the development of satellite communication networks and the increase of satellite services, security problems have gradually become some of the most concerning issues. Researchers have made great efforts, including conventional safety methods such as secure transmission, anti-jamming, secure access, and especially the new generation of active defense technology represented by MTD. However, few scholars have theoretically studied the influence of active defense technique on the performance of satellite networks. Formal modeling and performance analysis have not been given sufficient attention. In this paper, we focus on the performance evaluation of satellite network moving target defense system. Firstly, two Stochastic Petri Nets (SPN) models are constructed to analyze the performance of satellite network in traditional and active defense states, respectively. Secondly, the steady-state probability of each marking in SPN models is obtained by using the isomorphism relation between SPN and Markov Chains (MC), and further key performance indicators such as average time delay, throughput, and the utilization of bandwidth are reasoned theoretically. Finally, the proposed two SPN models are simulated based on the PIPE platform. In addition, the effect of parameters on the selected performance indexes is analyzed by varying the values of different parameters. The simulation results prove the correctness of the theoretical reasoning and draw the key factors affecting the performance of satellite network, which can provide an important theoretical basis for the design and performance optimization of the satellite network moving target defense system.


1990 ◽  
Vol 112 (1) ◽  
pp. 86-93 ◽  
Author(s):  
M. R. von Spakovsky ◽  
R. B. Evans

Optimization techniques are, in general, still not used today in the design and performance analysis of thermal systems and their components. The engineer’s search for the best system configuration is based solely on rules-of-thumb and not on a systematic, analytical determination of what the optimal design or performance should be. In addition, economic factors are not directly tied to thermodynamic ones; therefore, the economic ramifications of thermodynamic changes to the system are not usually, if ever, immediately apparent. A general analytical approach that directly determines the optimum thermodynamic and econmic behavior of thermal systems is discussed and illustrated using Rankine cycles. Utilizing the Second Law and typical Second Law costing techniques, this method provides for the creation of mathematical models that balance a cycle’s operating costs and capital expenditures. Such models can be solved numerically, subject to various constraints, for the optimum design and performance of thermal systems.


2015 ◽  
Vol 142 ◽  
pp. 361-388 ◽  
Author(s):  
Adam Chehouri ◽  
Rafic Younes ◽  
Adrian Ilinca ◽  
Jean Perron

2020 ◽  
Vol 12 (22) ◽  
pp. 3792
Author(s):  
Junying Yang ◽  
Xiaolan Qiu ◽  
Mingyang Shang ◽  
Lihua Zhong ◽  
Chibiao Ding

Azimuth multi-channel Synthetic Aperture Radar (SAR) system operated in burst mode makes high-resolution ultrawide-swath (HRUS) imaging become a reality. This kind of imaging mode has excellent application value for the maritime scenarios requiring wide-area monitoring. This paper suggests a moving target detection (MTD) method of marine scenes based on sparse recovery, which integrates detection, velocity estimation, and relocation. Firstly, the typical phenomenon of scene folding in the coarse-focused domain is introduced in detail. Given that the spatial distribution of moving vessels is highly sparse, the idea of sparse recovery is utilized to acquire the azimuth time characterizing the position of the moving target reasonably. Subsequently, the radial velocity and position information about the targets are obtained simultaneously. What makes the proposed method effective are two characteristics of the moving targets in ocean scenes, high signal-to-clutter ratio (SCR) and sparsity of the spatial distribution. Then, estimation performances under different SCR are analyzed by Monte Carlo experiments. And the actual SCR of the vessels in the ocean scene obtained by GaoFen-3 dual-receive channel mode is invoked as a reference value to verify the effectiveness. Besides, some simulation experiments demonstrate the capability to indicate marine moving targets.


Author(s):  
Xiaoxiao Guo ◽  
Yuansheng Liu ◽  
Qixue Zhong ◽  
Mengna Chai ◽  
◽  
...  

Multi-sensor fusion and target tracking are two key technologies for the environmental awareness system of autonomous vehicles. In this paper, a moving target tracking method based on the fusion of Lidar and binocular camera is proposed. Firstly, the position information obtained by the two types of sensors is fused at decision level by using adaptive weighting algorithm, and then the Joint Probability Data Association (JPDA) algorithm is correlated with the result of fusion to achieve multi-target tracking. Tested at a curve in the campus and compared with the Extended Kalman Filter (EKF) algorithm, the experimental results show that this algorithm can effectively overcome the limitation of a single sensor and track more accurately.


Sign in / Sign up

Export Citation Format

Share Document