MLVQ

Author(s):  
Kai Keng Ang ◽  
Chai Quek

The Learning Vector Quantization (LVQ) algorithm and its variants have been employed in some fuzzy neural networks to automatically derive membership functions from training data. Although several improvements to the LVQ algorithm have been proposed, problematic areas of the LVQ algorithm include: the selection of number of clusters, initial weights, proper training parameters, and forced termination. These problematic areas in the derivation of centroids of one-dimensional data are illustrated with an artificially generated experimental data set on LVQ, GLVQ, and FCM. A Modified Learning Vector Quantization (MLVQ) algorithm is presented in this chapter to address these problematic areas for one-dimensional data. MLVQ models the development of the nervous system in two stages: a first stage where the basic architecture and coarse connections patterns are laid out, and a second stage where the initial architecture is refined in activity-dependent ways. MLVQ determines the learning constant parameter and modifies the terminating condition of the LVQ algorithm so that convergence can be achieved and easily detected. Experiments on the MLVQ algorithm are performed and contrasted against LVQ, GLVQ, and FCM. Results show that MLVQ determines the number of clusters and converges to the centroids. Results also show that MLVQ is insensitive to the sequence of the training data, able to identify centroids of overlapping clusters, and able to ignore outliners without identifying them as separate clusters. Results using MLVQ algorithm and Gaussian membership functions with Pseudo Outer-Product Fuzzy Neural Network using Compositional Rule of Inference and Singleton fuzzifier (POPFNN-CRI(S)) on pattern classification and time series prediction are also provided to demonstrate the effectiveness of the fuzzy membership functions derived using MLVQ.

Kursor ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Candra Dewi ◽  
Muhammad Sa’idul Umam ◽  
Imam Cholissodin

Disease of the soybean crop is one of the obstacles to increase soybean production in Indonesia. Some of these diseases usually are found in the leaves and resulted to the crop become unhealthy. This study aims to identify disease on soybean leaf through leaves image by applying the Learning Vector Quantization (LVQ) algorithm. The identification begins with preprocessing using modified Otsu method to get part of the diseases on the leaves with a certain threshold value. The next process is to identify the type of disease using LVQ. This process uses the minimum value, the maximum value and the average value of the red, green and blue color of the image. The testing conducted in this study is to identify two diseases called Peronospora manshurica (Downy Mildew) and phakopsora pachyrhizi (Karat). The result of testing by using 60 training data and the value of all recommendations parameters obtained the highest accuracy of identification is 95% %, but the more stable accuracy is 90%. This result shows that the method perform quite well identification of two mentioned disease.


2021 ◽  
Vol 6 (2) ◽  
pp. 14-19
Author(s):  
Dinita Rahmalia ◽  
Mohammad Syaiful Pradana ◽  
Teguh Herlambang

There are many smartphones with various price sold in market. The price of smartphone is affected by some components such as weight, internal storage, memory (RAM), rear camera, front camera and brands. There are two methods for classifying price class of smartphone in market such as Learning Vector Quantization (LVQ) and Backpropagation (BP). From classifying price class of smartphone in market using LVQ and BP, there are the differences on the both of them. LVQ classifies price range of smartphone by euclidean distance of weight and data on its iteration. BP classifies price range of smartphone by gradient descent of target and output on its iteration. In multi output classification, one object may have multi output. Based on simulation results, BP gives the better accuracy and error rate in training data and testing data than LVQ.  


2020 ◽  
Vol 4 (2) ◽  
pp. 75-85
Author(s):  
Chrisani Waas ◽  
D. L. Rahakbauw ◽  
Yopi Andry Lesnussa

Artificial Neural Network (ANN) is an information processing system that has certain performance characteristics that are artificial representatives based on human neural networks. ANN method has been widely applied to help human performance, one of which is health. In this research, ANN will be used to diagnose cataracts, especially Congenital Cataracts, Juvenile Cataracts, Senile Cataracts and Traumatic Cataracts based on the symptoms of the disease. The ANN method used is the Learning Vector Quantization (LVQ) method. The data used in this research were 146 data taken from the medical record data of RSUD Dr. M. Haulussy, Ambon. The data consists of 109 data as training data and 37 data as testing data. By using learning rate (α) = 0.1, decrease in learning rate (dec α) = 0.0001 and maximum epoch (max epoch) = 5, the accuracy rate obtained is 100%.


Author(s):  
Erlinda Metta Dewi ◽  
Endah Purwanti ◽  
Retna Apsari

This research was conducted to design a system that is able to classify cervical cells into two classes, namely normal cells or abnormal cells. We use digital images of single cervical as research materials and Learning Vector Quantization (LVQ) as classification method.  Prior to classification, the nucleus areas of single cervical cell images were segmented and features were extracted. The features used in this study are 7 kinds of which consist of 2 types of feature, namely shape features and statistical features. The shape features used are area, perimeter, shape factor, and roundness of the nucleus, while the statistical features of the grayscale image histogram used are mean, standard deviation, and entropy. LVQ optimal parameter values based on the highest accuracy of training data, are learning rate 0.1 and learning rate reduction 0.5. The highest accuracy of system obtained from 45 testing data is 93.33%.


Author(s):  
Kostiantyn Sukhanov

The article deals with the method of classification of real data using the apparatus of fuzzy sets and fuzzy logic as a flexible tool for learning and recognition of natural objects on the example of oil and gas prospecting sections of the Dnieper-Donetsk basin. The real data in this approach are the values for the membership function that are obtained not through subjective expert judgment but from objective measurements. It is suggested to approximate the fuzzy set membership functions by using training data to use the approximation results obtained during the learning phase at the stage of identifying unknown objects. In the first step of learning, each traditional future of a learning data is matched by a primary traditional one-dimensional set whose membership function can only take values from a binary set — 0 if the learning object does not belong to the set, and 1 if the learning object belongs to the set. In the second step, the primary set is mapped to a fuzzy set, and the parameters of the membership function of this fuzzy set are determined by approximating this function of the traditional set membership. In the third step, the set of one-dimensional fuzzy sets that correspond to a single feature of the object is mapped to a fuzzy set that corresponds to all the features of the object in the training data set. Such a set is the intersection of fuzzy sets of individual features, to which the blurring and concentration operations of fuzzy set theory are applied in the last step. Thus, the function of belonging to a fuzzy set of a class is the operation of choosing a minimum value from the functions of fuzzy sets of individual features of objects, which are reduced to a certain degree corresponding to the operation of blurring or concentration. The task of assigning the object under study to a particular class is to compare the values of the membership functions of a multidimensional fuzzy set and to select the class in which the membership function takes the highest value. Additionally, after the training stage, it is possible to determine the degree of significance of an object future, which is an indistinctness index, to remove non-essential data (object futures) from the analysis.


2021 ◽  
Vol 3 (2) ◽  
pp. 160
Author(s):  
Rahmat Musa ◽  
Mutaqin Akbar

Bananas that ripen with chemical process or do not ripen naturally usually, this can be recognized by the presence of blackish patches on the surface of the skin. But visual recognition has its drawbacks, which is that it is difficult to recognize similarities between formalin bananas and natural bananas, resulting in a lack of accurate identification. In this study, a system was built that can determined formalin bananas and natural bananas through digital image identification using supervised classification. The image to be identification previously goes through the process of transforming RGB (Red Green Blue) color to Grayscale, and the process of extracting texture features using statically recognizable features through histograms, in the form of average, standard deviation, skewness, kurtosis, energy, entropy and smoothness. The extraction of texture features is classified with LVQ (Learning Vector Quantization) to determine formalin or natural bananas. The test was conducted with 122 banana imagery sample data, 100 imagery as training data consisting of 50 imagery for natural bananas and 50 imagery for bananas formalin, 22 imagery as test data. The test results showed LVQ method has the best percentage at Learning Rate 0.1, Decreased Learning Rate 0.75 and maximum epoch of 1000 with the smallest epoch of 7, obtained accuracy 90.90%, precision 84.61% and recall 100%.


Sign in / Sign up

Export Citation Format

Share Document