Survivability in Optical Networks

Author(s):  
Bin Wang

WDM optical networks are widely viewed as the most appropriate choice for the future Internet backbone with the potential to fulfill the ever-growing demands for bandwidth. A failure in a network such as a cable cut may result in a tremendous loss of data. Therefore, network survivability, the ability for a network to continue to provide services in the event of failures, is a very important issue in WDM optical networks. This chapter introduces the principles and state-of-the-art of survivability provisioning in optical networks, in particular, in optical networks that employ wavelength division multiplexing (WDM). Concepts of survivability provisioning in optical networks such as protection and restoration, dedicated versus shared survivability, path-based, link-based, segment-based, cycle-based survivability, and so on, are covered to provide multiple classes of quality of protection against single failure, dual-failure, multiple simultaneous failures, or shared risk link group failures, in WDM mesh networks. Recent developments in survivable service provisioning are summarized, such as survivability provisioning that takes into account the connection holding-time, survivability in WDM light-trail networks and optical burst switched networks. Finally, the chapter briefly examines future research directions.

Author(s):  
A. K. Rauniyar ◽  
A. S. Mandloi

<p>Optical Burst Switching (OBS) is considered to be a promising paradigm for bearing IP traffic in Wavelength Division Multiplexing (WDM) optical networks.  Scheduling of data burst in data channels in an optimal way is one of a key problem in Optical Burst Switched networks. The main concerns in this paper is to schedule the incoming bursts in proper data channel such that more burst can be scheduled so burst loss will be less. There are different algorithms exists to schedule data burst on data channels. Non-preemptive Delay-First Minimum Overlap Channel with Void Filling (NP-DFMOC-VF) and Non-preemptive Segment-First Minimum Overlap Channel with Void Filling (NP-SFMOC-VF) are best among other existing segmentation based void filling algorithms. Though it gives less burst loss but not existing the channel utilization efficiently. In this paper we propose a new approach, which will give less burst loss and also utilize existing channels in efficient way. Also analyze the performance of this proposed scheduling algorithm and compare it with the existing void filling algorithms. It is shown that the proposed algorithm gives some better performances compared to the existing algorithms.</p><p><em>Journal of Advanced College of Engineering and Management, Vol.1, 2015,</em> pp. 1-10</p><p> </p>


Author(s):  
Yousef S. Kavian ◽  
Bin Wang

Resilient optical transport networks have received much attention as the backbone for future Internet protocol (IP) networks with enhanced quality of services (QoS) by avoiding loss of data and revenue and providing acceptable services in the presence of failures and attacks. This chapter presents the principles of designing survivable Dense-Wavelength-Division-Multiplexing (DWDM) optical transport networks including failure scenarios, survivability hierarchy, routing and wavelength assignment (RWA), demand matrix models, and implementation approaches. Furthermore, the chapter addresses some current and future research challenges including dealing with multiple simultaneous failures, QoS-based RWA, robustness and future demand uncertainty accommodation, and quality of service issues in the deployment of resilient optical backbones for next generation transport networks.


2011 ◽  
Vol 474-476 ◽  
pp. 1479-1482
Author(s):  
Ning Zhang

In this paper, we analyze the optical network with wavelength conversion, and discuss the architecture of network with wavelength converter in its node. The optical cross connects technology for wavelength division multiplexing (WDM) is rapidly developing. Wavelength conversion is one of the key techniques for switch WDM optical networks. The wavelength conversion technology can achieve wavelength reuse, decrease wavelength competition, enhance network flexibility and scalability, and simplify network structure and management. The results show that If these cross-connectors feature integrated with wavelength conversion, network will be better able to play the full potential of WDM optical networks.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract Optical nonlinearities give rise to many ubiquitous effects in optical fibres ’. These effects are interesting in themselves and can be detrimental in optical communication. In the Dense Wave length division multiplexing system (DWDM) the nonlinear effects plays important role .DWDM system offers component reliability, system availability and system margin. DWDM system carries different channels. Hence power level carried by fiber increases which generates nonlinear effect such as SPM, XPM, SRS, SBS and FWM. Four wave mixing (FWM) is one of the most troubling issues. The FWM gives crosstalk in DWDM system whose channel spacing is narrow. Wavelength exchanging enables data swapping between two different wavelengths simultaneously. These phenomena have been used in many applications in Wavelength Division Multiplexing (WDM) optical networks such as, wavelength conversion, wavelength sampling, optical 3R, optical interconnects and optical add-drop multiplexing.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract Optical nonlinearities give rise to many ubiquitous effects in optical fibres ’. These effects are interesting in themselves and can be detrimental in optical communication. In the Dense Wave length division multiplexing system (DWDM) the nonlinear effects plays important role .DWDM system offers component reliability, system availability and system margin. DWDM system carries different channels. Hence power level carried by fiber increases which generates nonlinear effect such as SPM, XPM, SRS, SBS and FWM. Four wave mixing (FWM) is one of the most troubling issues. The FWM gives crosstalk in DWDM system whose channel spacing is narrow. Wavelength exchanging enables data swapping between two different wavelengths simultaneously. These phenomena have been used in many applications in Wavelength Division Multiplexing (WDM) optical networks such as, wavelength conversion, wavelength sampling, optical 3R, optical interconnects and optical add-drop multiplexing.


2021 ◽  
Author(s):  
Ebrahim E. Elsayed

Abstract Optical nonlinearities give rise to many ubiquitous effects in optical fibres. These effects are interesting in them and can be detrimental in optical communication. In the Dense Wave length division multiplexing system (DWDM) the nonlinear effects plays important role .DWDM system offers component reliability, system availability and system margin. DWDM system carries different channels. Hence power level carried by fiber increases which generates nonlinear effect such as SPM ,XPM, SRS, SBS and FWM. Four waves mixing (FWM) is one of the most troubling issues. The FWM gives crosstalk in DWDM system whose channel spacing is narrow. Wavelength exchanging enables data swapping between two different wavelengths simultaneously. These phenomena have been used in many applications in Wavelength Division Multiplexing (WDM) optical networks such as, wavelength conversion, wavelength sampling, optical 3R, optical interconnects and optical add-drop multiplexing.


2011 ◽  
Vol 21 (01) ◽  
pp. 3-12
Author(s):  
PIETRO CERES ◽  
RAFFAELE CERES

In optical networks the approach called wavelength division multiplexing allows multiple data streams to be transmitted concurrently along a single optical link, with different streams assigned separate wavelengths. In this paper we refer to all-optical networks, in which each connection is totally optical except at the terminal nodes. For these networks we determine the minimum possible number of links required to perform a fault tolerant broadcast from any node, in terms of the number of nodes, the number of link failures to tolerate and the number of wavelengths to use. We also give lower and upper bounds on the number of wavelengths required for any broadcast which tolerates a given number of link failures on networks with arbitrary topologies.


2018 ◽  
Vol 29 (06) ◽  
pp. 1003-1021 ◽  
Author(s):  
Yu-Liang Liu ◽  
Jou-Ming Chang

The exchanged crossed cube, denoted by [Formula: see text], is a novel interconnection network with fewer edges and smaller diameter compared to other variations of the corresponding hypercube. The linear array, denoted by [Formula: see text], is one of the most popular topologies in optical networks. This paper addresses the routing and wavelength assignment for realizing [Formula: see text] communication pattern on wavelength division multiplexing (WDM) optical network [Formula: see text], where [Formula: see text]. We prove that the congestion for [Formula: see text] on [Formula: see text] is equal to [Formula: see text], which is the lower bound of the minimum number of required wavelengths. In addition, an embedding scheme and an optimal wavelength assignment algorithm that achieve this bound are also proposed.


Sign in / Sign up

Export Citation Format

Share Document