Effects of Assistive Technologies Combined with Desktop Virtual Reality in Instructional Procedures (2)

Author(s):  
Gary Dotterer

Twenty-four practical nursing and health careers students were introduced by random assignment to the four treatments. Specifically, the study compared the learning effects on an instrument connection procedure used in a medical setting of four different learning treatments: text-only instruction, image-only instruction, desktop virtual reality (DVR) with assistive technologies (ATs) (i.e., audio combined with closed caption) instruction, and hands-on demonstration instruction. This study used descriptive statistics, analysis of variance (ANOVA), and qualitative comments and observation to discover important design and implementation challenges for DVR.

Author(s):  
Gary Dotterer

Based on research, desktop virtual reality (DVR) has been shown to have learning benefits over traditional methods of instruction. However, implementing assistive technology (ATs) in DVR would seem to enhance the learning process. This study aimed to examine effects of web-based DVR on learning performances. The literature reviewed for this particular study ultimately shows DVR to be beneficial in training in many fields found in the workforce. The overall advantages utilizing advanced technology in the form of DVR and ATs allow safe and controlled training environments, realistic simulations, and the ability to reconstruct learner processes and interactions.


2020 ◽  
Vol 162 (6) ◽  
pp. 922-925 ◽  
Author(s):  
Samuel R. Barber ◽  
Saurabh Jain ◽  
Michael A. Mooney ◽  
Kaith K. Almefty ◽  
Michael T. Lawton ◽  
...  

Mastery of lateral skull base (LSB) surgery requires thorough knowledge of complex, 3-dimensional (3D) microanatomy and techniques. While supervised operation under binocular microscopy remains the training gold standard, concerns over operative time and patient safety often limit novice surgeons’ stereoscopic exposure. Furthermore, most alternative educational resources cannot meet this need. Here we present proof of concept for a tool that combines 3D-operative video with an interactive, stereotactic teaching environment. Stereoscopic video was recorded with a microscope during translabyrinthine approaches for vestibular schwannoma. Digital imaging and communications in medicine (DICOM) temporal bone computed tomography images were segmented using 3D-Slicer. Files were rendered using a game engine software built for desktop virtual reality. The resulting simulation was an interactive immersion combining a 3D operative perspective from the lead surgeon’s chair with virtual reality temporal bone models capable of hands-on manipulation, label toggling, and transparency modification. This novel tool may alter LSB training paradigms.


Author(s):  
Bruno Della Mea GASPERIN ◽  
Thamyres ZANIRATI ◽  
Leandro Totti Cavazzola

ABSTRACT Background: The increasingly intense usage of technology applied to videosurgery and the advent of robotic platforms accelerated the use of virtual models in training surgical skills. Aim: To evaluate the performance of a general surgery department’s residents in a video-simulated laparoscopic cholecystectomy in order to understand whether training with virtual reality is sufficient to provide the skills that are normally acquired in hands-on experience at the operating room. Methods: An observational study with twenty-five first- and second-year general surgery residents. Each subject performed three video-laparoscopic cholecystectomies under supervision in a simulator. Only the best performance was evaluated in the study. Total number of complications and total procedure time were evaluated independently. The groups were defined according to total practice time (G1 and G2) and the year of residency (R1 and R2), each being analysed separately. Results: Twenty-one residents finished the three practices, with four follow-up losses. Mean practice time was 33.5 hours. Lowering of the rate of lesions in important structures could be identified after a level of proficiency of 60%, which all participants obtained regardless of previous in vivo experience. No significant difference between the R1 and R2 groups was observed. Conclusion: Learning in groups R1 and R2 was equal, regardless of whether previous practice was predominantly in vivo (R2) or with virtual reality (R1). Therefore, it is possible to consider that skills obtained in virtual reality training are capable of equalising the proficiency of first- and second-year residents, being invaluable to increase patient safety and homogenise learning of basic surgical procedures.


2018 ◽  
Vol 18 (2) ◽  
pp. 30-57
Author(s):  
Shamima Yasmin

This paper conducts an extensive survey on existing Virtual Reality (VR)-based rehabilitation approaches in the context of different types of impairments: mobility, cognitive, and visual. Some VR-based assistive technologies involve repetitions of body movements, some require persistent mental exercise, while some work as sensory substitution systems. A multi-modal VR-based environment can incorporate a number of senses, (i.e., visual, auditory, or haptic) into the system and can be an immense source of motivation and engagement in comparison with traditional rehabilitation therapy. This survey categorizes virtual environments on the basis of different available modalities. Each category is again subcategorized by the types of impairments while introducing available devices and interfaces. Before concluding the survey, the paper also briefly focuses on some issues with existing VR-based approaches that need to be optimized to exploit the utmost benefit of virtual environment-based rehabilitation systems .


Sign in / Sign up

Export Citation Format

Share Document