Investigating the Effectiveness of Desktop Virtual Reality for Teaching and Learning of Electrical/Electronics Technology in Universities

2018 ◽  
Vol 35 (3) ◽  
pp. 226-248 ◽  
Author(s):  
Theresa Chinyere Ogbuanya ◽  
Nicholas Ogbonna Onele
2020 ◽  
Vol 5 (3) ◽  
pp. 32-38
Author(s):  
Fakhriddin Nuraliev ◽  
◽  
Ulugbek Giyosov

Since the last few decades, virtual reality (VR) and augmented reality (AR) interfaces have shown the potential to enhance teaching and learning, by combining physical and virtual worlds and leveraging the advantages of both. Conservative techniques of content presentation (fixed video, audio, scripts) lack personalization and interaction.


2020 ◽  
Vol 162 (6) ◽  
pp. 922-925 ◽  
Author(s):  
Samuel R. Barber ◽  
Saurabh Jain ◽  
Michael A. Mooney ◽  
Kaith K. Almefty ◽  
Michael T. Lawton ◽  
...  

Mastery of lateral skull base (LSB) surgery requires thorough knowledge of complex, 3-dimensional (3D) microanatomy and techniques. While supervised operation under binocular microscopy remains the training gold standard, concerns over operative time and patient safety often limit novice surgeons’ stereoscopic exposure. Furthermore, most alternative educational resources cannot meet this need. Here we present proof of concept for a tool that combines 3D-operative video with an interactive, stereotactic teaching environment. Stereoscopic video was recorded with a microscope during translabyrinthine approaches for vestibular schwannoma. Digital imaging and communications in medicine (DICOM) temporal bone computed tomography images were segmented using 3D-Slicer. Files were rendered using a game engine software built for desktop virtual reality. The resulting simulation was an interactive immersion combining a 3D operative perspective from the lead surgeon’s chair with virtual reality temporal bone models capable of hands-on manipulation, label toggling, and transparency modification. This novel tool may alter LSB training paradigms.


2001 ◽  
Vol 5 (1) ◽  
pp. 167-184 ◽  
Author(s):  
Robert L. Williams II ◽  
Meng-Yun Chen ◽  
Jeffrey M. Seaton

This article describes a unique project using commercial haptic interfaces to augment the teaching of high school physics. Since force is central to the teaching of physics, we believe that the use of haptics in virtual reality physics simulations has the potential for deeper, more engaging learning. Software has been developed which is freely-available on the internet, and HTML tutorials have been developed to support these haptics-augmented software activities in the teaching and learning of high school physics. Pilot study results are reported, which yielded positive feedback and suggestions for project improvement from high school physics students and teachers.


2021 ◽  
Author(s):  
Dênis Leite ◽  
Higor Santos ◽  
Ariane Rodrigues ◽  
Cléviton Monteiro ◽  
Alexandre Maciel

Despite the practical classes in laboratories and simulations, the traditional automation engineering teaching and learning process remains with little adherence to the reality professional. In this context, this research proposes a hybrid teaching and learning approach for subjects on software development of automation systems based on problems with virtual reality features and gamification strategies. Its main objective is to enhance the alignment between theory and practice, playfully and engagingly mirrored in the industry's need. The proposed approach was developed based on Design Science Research and evaluated in seven classes of an undergraduate subject from the perspective of students and industrial professionals. The results evidence the evolution of the approach over the time and the ability to promote the connection between theory and professional practice.


The present work presents a research carried out with 6th and 7th grade students of Elementary School II at Escola Municipal Mon. Walfredo Gurgel Alto do Rodrigues/RN, aiming to encourage the use of materials such as Ruler and Square in Mathematics classes and to know your opinion about the use of Augmented Reality and Virtual Reality glasses. This aimed at a reflective analysis of how the inclusion of technologies in education can enhance learning when the use of multimedia resources that help in understanding mathematical concepts or that enable a dynamic visualization of the object of study are encouraged. She seeks to know what the contribution of this device to the teaching and learning process of Mathematics. Methodologically, the work is characterized as an exploratory research of qualitative and quantitative nature, with a bias towards a case study, with data collected through a semi-structured questionnaire with 102 students. We can count on an interdisciplinary planning to present the programmed contents with more meaning. The results were analyzed based on the research instruments and the testimonies of the students, in addition to a brief study on information and communication technologies applied to learning. Thus, the data are organized in graphs where the research findings are expressed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhammad Mujtaba Asad ◽  
Fahad Sherwani ◽  
Razali Bin Hassan ◽  
Zafarullah Sahito ◽  
Najmonnisa Khan

Purpose Oil and gas industries play a major role for the growth of world economy, and drilling operation is considered as most important and hazardous procedure at the same time for oil and gas drilling crew because of the lack of effectual and user-friendly safety and health teaching and learning aids with updated knowledge and training capability. According to the previous studies, there is an urgent industrial need for user interactive technological aid for enhancing the teaching and learning of oil and gas drilling crew and safety officials at onshore and offshore drilling domains to fulfill the requirements of fourth industrial and educational revolutions. Therefore, this proposed virtual reality (VR)-based Hazard Free Operation (HAZFO Expert 2.0) teaching and learning aid to reduce the workplace risk and hazards to enhance the vestibule and experiential learning performance of oil and gas drilling process at Pakistani drilling industries. Design/methodology/approach In this proposed product based study for interactive teaching and learning application for industry, sequential explanatory research design will be adopted to prevent the accidents according to the modern technologies in this era of IR 4.0. Whereas, for the development of VR-based educational aid for Pakistani oil and gas industries, Autodesk 3ds Max, visual studio and MySQL software’s will be used. Findings This new concept of VR-based interactive educational aid (HAZFO Expert 2.0) for accident prevention at oil and gas drilling industries will be based on potential hazards and their suitable controlling measures for onshore and offshore drilling sites. Practical implications VR-based interactive educational aid for oil and gas workforce will facilitate the health and safety professionals for the elimination of potential hazards associated with oil and gas drilling activities to the next level of identification of hazards which has been identified in HAZFO Expert 1.0 at onshore and offshore drilling sites. Originality/value This proposed VR-based interactive educational aid for safe drilling process will be the first visual teaching and e-learning technology which covers all onshore and offshore drilling operations in Pakistani oil and gas industries and provides effective hazard controlling strategies to overcome challenging industrial hazards.


Sign in / Sign up

Export Citation Format

Share Document