Electromagnetic Optimization using Genetic Algorithms

Author(s):  
P. Mukherjee ◽  
E. L. Hines

This chapter focuses on the application of Genetic Algorithms (GAs) techniques in overcoming the limitations of microstrip antennas in terms of several key parameters such as bandwidth, power-handling capacity etc. In this chapter the effectiveness of GAs is discussed in relation to Electromagnetic optimization. A matching network has been designed for single band and dual band matching of microstrip antenna using GA.

2020 ◽  
Vol 4 (1) ◽  
pp. 246-253
Author(s):  
Nurista Wahyu Kirana

In this paper, the characteristics of dual band rectangular patch microstrip antenna using proximity couple feed are studied. It can be used for a wireless device that works on multiband frequency. The addition of slot and proximity feed used in order to obtain larger bandwidth and multiple frequency. Microstrip antenna is designed and simulated using software also used to analyze by changing the variable of microstrip slot’s dimension. The parameters are tested in this study include Voltage standing wave ratio (VSWR), return loss, gain, bandwidth and radiation patterns. From the simulation results, the best value of return loss antenna is -23,29 dB at 2,4 GHz with a slot width of 1 mm and 0,085 GHz bandwidth. At 3,7 GHz, the best value of return loss antenna is -23dB with a slot width of 2 mm and 0,12 GHz bandwidth. Afterwards, the best VSWR obtained on dual band microstrip antennas with proximity coupled feed is 1,14 and 5.53 dBi gain.Keywords: slot, bandwidth, proximity, return loss, gain.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1321
Author(s):  
Wahaj Abbas Awan ◽  
Syeda Iffat Naqvi ◽  
Wael Abd Ellatif Ali ◽  
Niamat Hussain ◽  
Amjad Iqbal ◽  
...  

This paper presents a compact and simple reconfigurable antenna with wide-band, dual-band, and single-band operating modes. Initially, a co-planar waveguide-fed triangular monopole antenna is obtained with a wide operational frequency band ranging from 4.0 GHz to 7.8 GHz. Then, two additional stubs are connected to the triangular monopole through two p-i-n diodes. By electrically switching these p-i-n diodes ON and OFF, different operating frequency bands can be attained. When turning ON only one diode, the antenna offers dual-band operations of 3.3–4.2 GHz and 5.8–7.2 GHz. Meanwhile, the antenna with single-band operation from 3.3 GHz to 4.2 GHz can be realized when both of the p-i-n diodes are switched to ON states. The proposed compact size antenna with dimensions of 0.27λ0 × 0.16λ0 × 0.017λ0 at the lower operating frequency (3.3 GHz) can be used for several wireless applications such as worldwide interoperability for microwave access (WiMAX), wireless access in the vehicular environment (WAVE), and wireless local area network (WLAN). A comparative analysis with state-of-the-art works exhibits that the presented design possesses advantages of compact size and multiple operating modes.


Sign in / Sign up

Export Citation Format

Share Document