Infrastructures in Vehicular Communications

Author(s):  
Danda B. Rawat ◽  
Gongjun Yan

Vehicular communication is regarded as a backbone for the development of intelligent transportation system (ITS). Recently vehicular communication has attracted researchers from both academia and industry all over the world, notably, in the United States of America, Japan and European Union. The rapid advances in wireless technologies provide opportunities to utilize them in vehicular communication in advanced road safety applications. The most important feature of vehicular communication is to improve the road traffic safety, efficiency, comfort and quality of everyday road travel. Networking in particular and communication in general are important rudiments in the development of ITS. Generally, in vehicular communication, the information exchange occurs among vehicles not only in an ad-hoc based vehicle-to-vehicle networking but also in a vehicle-to-infrastructure with possible intermediate infrastructure-to-infrastructure networking. Therefore, the infrastructure plays major role in order to realize the full potential of vehicular communications. This chapter provides an in-depth survey of the infrastructures and technologies that are recently proposed as part of future ITS developments as well as tested for vehicular communications in mobile environment. Specifically, we provide an in-depth analysis of wireless technology-applications such as ad-hoc networking and wireless local area network (WLAN), dedicated short-range communication (DSRC), cellular technology and NOTICE Architecture, and compare their characteristics in terms of their abilities to support vehicular communications for development of ITS.

2012 ◽  
pp. 2089-2107
Author(s):  
Danda B. Rawat ◽  
Gongjun Yan

Vehicular communication is regarded as a backbone for the development of intelligent transportation system (ITS). Recently vehicular communication has attracted researchers from both academia and industry all over the world, notably, in the United States of America, Japan and European Union. The rapid advances in wireless technologies provide opportunities to utilize them in vehicular communication in advanced road safety applications. The most important feature of vehicular communication is to improve the road traffic safety, efficiency, comfort and quality of everyday road travel. Networking in particular and communication in general are important rudiments in the development of ITS. Generally, in vehicular communication, the information exchange occurs among vehicles not only in an ad-hoc based vehicle-to-vehicle networking but also in a vehicle-to-infrastructure with possible intermediate infrastructure-to-infrastructure networking. Therefore, the infrastructure plays major role in order to realize the full potential of vehicular communications. This chapter provides an in-depth survey of the infrastructures and technologies that are recently proposed as part of future ITS developments as well as tested for vehicular communications in mobile environment. Specifically, we provide an in-depth analysis of wireless technology-applications such as ad-hoc networking and wireless local area network (WLAN), dedicated short-range communication (DSRC), cellular technology and NOTICE Architecture, and compare their characteristics in terms of their abilities to support vehicular communications for development of ITS.


Author(s):  
Amolkirat Singh ◽  
Guneet Saini

Many people lose their life and/or are injured due to accidents or unexpected events taking place on road networks. Besides traffic jams, these accidents generate a tremendous waste of time and fuel. Undoubtedly, if the vehicles are provided with timely and dynamic information related to road traffic conditions, any unexpected events or accidents, the safety and efficiency of the transportation system with respect to time, distance, fuel consumption and environmentally destructive emissions can be improved. In the field of computer and information science, Vehicular Ad hoc Network (VANET) have recently emerged as an effective tool for improving road safety through propagation of warning messages among the vehicles in the network about potential obstacles on the road ahead. VANET is a research area which is in more demand among the researchers, the automobile industries and scientists to discover about the loopholes and advantages of the vehicular networks so that efficient routing algorithms can be developed which can provide reliable and secure communication among the mobile nodes.In this paper, we propose a Groundwork Based Ad hoc On Demand Distance Vector Routing Protocol (GAODV) focus on how the Road Side Units (RSU’s) utilized in the architecture plays an important role for making the communication reliable. In the interval of finding the suitable path from source to destination the packet loss may occur and the delay also is counted if the required packet does not reach the specified destination on time. So to overcome delay, packet loss and to increase throughput GAODV approach is followed. The performance parameters in the GAODV comes out to be much better than computed in the traditional approach.


2015 ◽  
Vol 6 (1) ◽  
pp. 119
Author(s):  
S.N.M.P. Simamora

ABSTRAK Mobile Ad-hoc Network (MANET) sebagai wireless local area network yang bersifat dinamis dalam hal pergerakan node berperan untuk mengkondisikan setiap terminal client sebagai backwarding/fowarding-devices. Dengan demikian kondisi topologi jaringan akan berubah seiring dengan perubahan posisi pada node-client. Hal ini tentu saja akan memberikan keuntungan yang baik pada client dalam segi fleksibilitas tempat, mengurangi biaya instalasi, reduksi penyediaan infrastruktur dan sifat temporary instalasi sesuai dengan kebutuhan yang diinginkan. Pada penelitian ini telah dilakukan pemodelan dan simulasi untuk menunjukkan algoritma routing-network, status node yang terlibat dalam MANET, dan perhitungan nilai QoS dari komunikasi-data yang dibangun antar node yang saling bertetangga. Hasilnya menunjukkan perubahan topologi jaringan mengalami perubahan seiring dengan perubahan skenario yang dibangkitkan secara random dan stokastik; dan perubahan topologi jaringan ini merepresentasikan perubahan posisi node dalam MANET saat membangun komunikasi-data dari node-sender ke node-receiver. Metode pengujian menggunakan teknik kuantitatif serta kondisi random direpresentasikan dengan pembangkitan bilangan random yang bekerja berdasar Distribusi Normal/Gauss. Algoritma SNetS yang digunakan telah dapat mengakomodir jumlah N-node, sehingga kondisi node-terminal, bagaimana status node, serta QoS yang didapatkan mendekati kondisi real. Kata kunci: mobile ad-hoc network, backwarding/fowarding-devices, model, topologi dinamis, random, algoritma SNetS.


2013 ◽  
pp. 323-342
Author(s):  
Rodrigo Lange ◽  
Rômulo Silva de Oliveira

In recent years, the automotive industry has witnessed an exponential growth in the number of vehicular embedded applications, leading to the adoption of distributed implementations for systems in the powertrain and chassis domains. The Controller Area Network (CAN) protocol has been a de facto standard for intra-vehicular communications, while the FlexRay Communication System is being promoted as the future de facto standard for network interconnections of applications related to X-by-wire systems. Due to the characteristics of CAN and FlexRay, the coexistence of both protocols in the same vehicle is expected, leading to the use of gateways to manage the information exchange between electronic control units connected to different network segments. This chapter describes the main characteristics of CAN and FlexRay protocols, surveying the literature addressing schedulability and time analysis in both FlexRay and CAN protocols. The chapter also outlines the state-of-the-art in research about gateways for intra-vehicular communication networks.


Author(s):  
Ziyuan Wang ◽  
Lars Kulik ◽  
Kotagiri Ramamohanarao

Congestion is a major challenge in today’s road traffic. The primary cause is bottlenecks such as ramps leading onto highways, or lane blockage due to obstacles. In these situations, the road capacity reduces because several traffic streams merge to fewer streams. Another important factor is the non-coordinated driving behavior resulting from the lack of information or the intention to minimize the travel time of a single car. This chapter surveys traffic control strategies for optimizing traffic flow on highways, with a focus on more adaptive and flexible strategies facilitated by current advancements in sensor-enabled cars and vehicular ad hoc networks (VANETs). The authors investigate proactive merging strategies assuming that sensor-enabled cars can detect the distance to neighboring cars and communicate their velocity and acceleration among each other. Proactive merging strategies can significantly improve traffic flow by increasing it up to 100% and reduce the overall travel delay by 30%.


1995 ◽  
Vol 1 (2) ◽  
pp. 161-174 ◽  
Author(s):  
K. Y. Eng ◽  
M. J. Karol ◽  
M. Veeraraghavan ◽  
E. Ayanoglu ◽  
C. B. Woodworth ◽  
...  

2021 ◽  
Author(s):  
Ibraheem Abdelazeem Ibraheem Ali ◽  
Zhang Weibin ◽  
Zhenping Zeng ◽  
Abdeldime mohamed saleh

Abstract Security in Vehicular Ad Hoc Network (VANET) is one of the major challenging topics and the secure key interchange between two legitimate vehicles is an important issue. The multi-environment of VANET has been exploited to extract the secret key and employed security services in VANET. However, it offered more excellence randomness owed to fading, noise multi-path, and velocity difference. Some of the factors like Bit-rate, complication and memory requests are reduced by using a process known as quantization. This paper proposes a new quantization method to extract the secret key for vehicular communications that uses a lossy quantizer in combination with information reconciliation and privacy amplification. Our work focuses on the quantization phase for the secret generation procedure. The comprehensive simulations display the propose method increases the zone and number of the quantization levels to utilize the maximum number of measurements to reduce reasonably the wasted measurements.


The number of vehicles on the road are increasing rapidly day by day, which leads to massive road congestions and traffic deadlocks. This paper proposes a model for an algorithm-based technique for efficient resolution of road traffic deadlocks, which would work on the technologies related to the Internet of Vehicles (IoV), while keeping the safe and efficient movement of vehicles along with the maintenance of constant communication with nearby vehicles and roadside infrastructure using Vehicular Ad-hoc Networks (VANETs). This would ultimately aid towards the optimization of road traffic, which is very much a need of the hour considering the ever-increasing amount of traffic on the roads today. We make use of two important phases, namely, Deadlock Detection Phase and Deadlock Resolution Phase in order to resolve traffic deadlocks. An equally important focus has been put towards a deep understanding of the motivation behind the efforts put in this paper by examining the present scenario of road traffic conditions and their resulting complications, and how the proposed model could potentially help resolve such complications. It also involves a brief discussion on VANETs, which provides an efficient means of connecting the vehicles together in a network for seamless communications


Sign in / Sign up

Export Citation Format

Share Document