A Survey of Nature-Inspired Algorithms With Application to Well Placement Optimization

Author(s):  
Jahedul Islam ◽  
Pandian M. Vasant ◽  
Berihun Mamo Negash ◽  
Moacyr Bartholomeu Laruccia ◽  
Myo Myint

Well placement optimization is one of the major challenging factors in the field development process in the oil and gas industry. This chapter aims to survey prominent metaheuristic techniques, which solve well the placement optimization problem. The well placement optimization problem is considered as high dimensional, discontinuous, and multi-model optimization problem. Moreover, the computational expenses further complicate the issue. Over the last decade, both gradient-based and gradient-free optimization methods were implemented. Gradient-free optimization, such as the particle swarm optimization, genetic algorithm, is implemented in this area. These optimization techniques are utilized as standalone or as the hybridization of optimization methods to maximize the economic factors. In this chapter, the authors survey the two most popular nature-inspired metaheuristic optimization techniques and their application to maximize the economic factors.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 857
Author(s):  
Jahedul Islam ◽  
Md Shokor A. Rahaman ◽  
Pandian M. Vasant ◽  
Berihun Mamo Negash ◽  
Ahshanul Hoqe ◽  
...  

Well placement optimization is considered a non-convex and highly multimodal optimization problem. In this article, a modified crow search algorithm is proposed to tackle the well placement optimization problem. This article proposes modifications based on local search and niching techniques in the crow search algorithm (CSA). At first, the suggested approach is verified by experimenting with the benchmark functions. For test functions, the results of the proposed approach demonstrated a higher convergence rate and a better solution. Again, the performance of the proposed technique is evaluated with well placement optimization problem and compared with particle swarm optimization (PSO), the Gravitational Search Algorithm (GSA), and the Crow search algorithm (CSA). The outcomes of the study revealed that the niching crow search algorithm is the most efficient and effective compared to the other techniques.


2020 ◽  
Vol 141 ◽  
pp. 102767 ◽  
Author(s):  
Jahedul Islam ◽  
Pandian M. Vasant ◽  
Berihun Mamo Negash ◽  
Moacyr Bartholomeu Laruccia ◽  
Myo Myint ◽  
...  

2020 ◽  
Vol 4 (3) ◽  
pp. 181
Author(s):  
Jahedul Islam ◽  
Pandian Vasant ◽  
Berihun Mamo Negash ◽  
Atulan Gupta ◽  
Junzo Watada ◽  
...  

Optimization of well placement is one of the main difficult factors in the development process in the oil and gas industry. The well placement optimization is high dimensional, multi-modal and discontinuous. In previous research, conventional and non-conventional optimization techniques have been applied to resolve this problem. However, gradient-free optimization techniques such as genetic algorithm and particle swarm optimization which is considered as the most efficient algorithms in this area suffer from local optima. In this article, two new metaheuristic optimization techniques, namely, crow search algorithm and firefly algorithm are applied to the well placement optimization problem and their applications to maximize the net profit value are studied. To study the performance of the firefly and crow search algorithm, Eclipse and MATLAB environment are used. The proposed techniques are compared to popular established methods for optimizing well placement. Results show that the firefly algorithm is proved to be efficient and effective compared to other established techniques. However, the standard crow search algorithm is not suited to this problem. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Chen Hongwei ◽  
Feng Qihong ◽  
Zhang Xianmin ◽  
Wang Sen ◽  
Zhou Wensheng ◽  
...  

Proper well placement can improve the oil recovery and economic benefits during oilfield development. Due to the nonlinear and complex properties of well placement optimization, an effective optimization algorithm is required. In this paper, cat swarm optimization (CSO) algorithm is applied to optimize well placement for maximum net present value (NPV). CSO algorithm, a heuristic algorithm that mimics the behavior of a swarm of cats, has characteristics of flexibility, fast convergence, and high robustness. Oilfield development constraints are taken into account during well placement optimization process. Rejection method, repair method, static penalization method, dynamic penalization method and adapt penalization method are, respectively, applied to handle well placement constraints and then the optimal constraint handling method is obtained. Besides, we compare the CSO algorithm optimization performance with genetic algorithm (GA) and differential evolution (DE) algorithm. With the selected constraint handling method, CSO, GA, and DE algorithms are applied to solve well placement optimization problem for a two-dimensional (2D) conceptual model and a three-dimensional (3D) semisynthetic reservoir. Results demonstrate that CSO algorithm outperforms GA and DE algorithm. The proposed CSO algorithm can effectively solve the constrained well placement optimization problem with adapt penalization method.


2020 ◽  
pp. 014459872097442
Author(s):  
M A Dada ◽  
M Mellal ◽  
A Makhloufi ◽  
H Belhouchet

One of the major goals that field planning engineers and decision makers have to achieve in terms of reservoir management and hydrocarbon recovery optimization is the maximization of return on financial investments. This task yet very challenging due to high number of decision variables and some uncertainties, pushes the engineers and technical advisors to seek for robust optimization methods in order to optimally place wells in the most profitable locations with a focus on increasing the net-present value over a project life-cycle. The quest to deliver a good quality advice is also dependent on how some uncertainties – geologic, economic and flow patterns – have been handled and formulated all along the optimization process. With the enhancement of computer power and the advent of remarkable optimization techniques, the oil and gas industry has at hand a wide range of tools to get an overview on value maximization from petroleum assets. Amongst these tools, genetic algorithms which belong to stochastic optimization methods have become well known in the industry as one the best alternatives to apply when trying to solve well placement and production allocation problems, though computationally demanding. The aim of this work is to present a novel approach in the area of hydrocarbon production optimization where control settings and well placement are to be determined based on a single objective function, in addition to the optimization of wells’ trajectories. Starting from a reservoir dynamic model of a synthetic offshore oil field assisted by water injection, the work consisted in building a data-driven model that was generated using artificial neural networks. Then, we used Matlab’s genetic algorithm toolbox to perform all the needed optimizations; from which, we were able to establish a drilling schedule for the set of wells to be realized, and we made it possible to simultaneously get the well location and configuration (vertical or horizontal), well type (producer or injector), well length, well orientation – in the horizontal plane –, as well as well controls (flow rates) and near wellbore pressure with respect to a set of linear and nonlinear-constraints. These constraints were formulated so as to reproduce real field development considerations, and with the aid of a genetic algorithm procedure written upon Matlab, we were able to satisfy those constraints such as, maximum production and injection rates, optimal wellbore pressures, maximum allowable liquid processing capacity, optimal well locations, wells’ drilling and completion maximum duration, in addition to other considerations. We have investigated some scenarios with the intention of proving the benefits of development strategy that we have chosen to study. It was found the chosen scenario could improve NPV by 3 folds in comparison to a base case scenario. The positioning of the wells was successful as all producers were placed in zones having initial water saturation less than 0.4., and all injectors were placed high water saturation zones. Moreover, we established a procedure regarding well trajectory design and optimization by taking into account, minimum dogleg severity and maximum duration for a well to be drilled and completed with respect to a time threshold. The findings as well as the workflow that will be presented hereafter could be considered as a guideline for subsequent tasks pertaining to the process of decision making, especially when it has to do with the development of green oil and gas fields and will certainly help in the placement of wells in less risky and cost-effective locations.


2016 ◽  
Vol 20 (6) ◽  
pp. 1185-1209 ◽  
Author(s):  
Mansoureh Jesmani ◽  
Mathias C. Bellout ◽  
Remus Hanea ◽  
Bjarne Foss

Sign in / Sign up

Export Citation Format

Share Document