Multiple Flames Recognition Using Deep Learning

Author(s):  
Chen Xin ◽  
Minh Nguyen ◽  
Wei Qi Yan

Identifying fire flames is based on object recognition which has valuable applications in intelligent surveillance. This chapter focuses on flame recognition using deep learning and its evaluations. For achieving this goal, authors design a Multi-Flame Detection scheme (MFD) which utilises Convolutional Neural Networks (CNNs). Authors take use of TensorFlow in deep learning with an NVIDIA GPU to train an image dataset and constructed a model for flame recognition. The contributions of this book chapter are: (1) data augmentation for flame recognition, (2) model construction for deep learning, and (3) result evaluations for flame recognition using deep learning.

2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shiyang Yan ◽  
Yizhang Xia ◽  
Jeremy S. Smith ◽  
Wenjin Lu ◽  
Bailing Zhang

Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs) in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN) model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5758
Author(s):  
Xiaofeng Feng ◽  
Hengyu Hui ◽  
Ziyang Liang ◽  
Wenchong Guo ◽  
Huakun Que ◽  
...  

Electricity theft decreases electricity revenues and brings risks to power usage’s safety, which has been increasingly challenging nowadays. As the mainstream in the relevant studies, the state-of-the-art data-driven approaches mainly detect electricity theft events from the perspective of the correlations between different daily or weekly loads, which is relatively inadequate to extract features from hours or more of fine-grained temporal data. In view of the above deficiencies, we propose a novel electricity theft detection scheme based on text convolutional neural networks (TextCNN). Specifically, we convert electricity consumption measurements over a horizon of interest into a two-dimensional time-series containing the intraday electricity features. Based on the data structure, the proposed method can accurately capture various periodical features of electricity consumption. Moreover, a data augmentation method is proposed to cope with the imbalance of electricity theft data. Extensive experimental results based on realistic Chinese and Irish datasets indicate that the proposed model achieves a better performance compared with other existing methods.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 146 ◽  
Author(s):  
Xinhua Liu ◽  
Yao Zou ◽  
Hailan Kuang ◽  
Xiaolin Ma

Face images contain many important biological characteristics. The research directions of face images mainly include face age estimation, gender judgment, and facial expression recognition. Taking face age estimation as an example, the estimation of face age images through algorithms can be widely used in the fields of biometrics, intelligent monitoring, human-computer interaction, and personalized services. With the rapid development of computer technology, the processing speed of electronic devices has greatly increased, and the storage capacity has been greatly increased, allowing deep learning to dominate the field of artificial intelligence. Traditional age estimation methods first design features manually, then extract features, and perform age estimation. Convolutional neural networks (CNN) in deep learning have incomparable advantages in processing image features. Practice has proven that the accuracy of using convolutional neural networks to estimate the age of face images is far superior to traditional methods. However, as neural networks are designed to be deeper, and networks are becoming larger and more complex, this makes it difficult to deploy models on mobile terminals. Based on a lightweight convolutional neural network, an improved ShuffleNetV2 network based on the mixed attention mechanism (MA-SFV2: Mixed Attention-ShuffleNetV2) is proposed in this paper by transforming the output layer, merging classification and regression age estimation methods, and highlighting important features by preprocessing images and data augmentation methods. The influence of noise vectors such as the environmental information unrelated to faces in the image is reduced, so that the final age estimation accuracy can be comparable to the state-of-the-art.


Convolutional Neural Networks(CNNs) are a floating area in Deep Learning. Now a days CNNs are used inside the more note worthy some portion of the Object Recognition tasks. It is used in stand-out utility regions like Speech Recognition, Pattern Acknowledgment, Computer Vision, Object Detection and extraordinary photograph handling programs. CNN orders the realities in light of an opportunity regard. Right now, inside and out assessment of CNN shape and projects are built up. A relative examine of different assortments of CNN are too portrayed on this work.


2020 ◽  
Author(s):  
Hüseyin Yaşar ◽  
Murat Ceylan

Abstract The Covid-19 virus outbreak that emerged in China at the end of 2019 caused a huge and devastating effect worldwide. In patients with severe symptoms of the disease, pneumonia develops due to Covid-19 virus. This causes intense involvement and damage in lungs. Although the emergence of the disease occurred a short time ago, many literature studies have been carried out in which these effects of the disease on the lungs were revealed by the help of lung CT imaging. In this study, the amount of 25 lung CT images in total (15 of Covid-19 patients and 10 of normal) was multiplied (250 images in total) using three data augmentation methods which relate to contrast change, brightness change and noise addition, and these images were subjected to automatic classification. Within the scope of the study, experiments were made for each case which include the use of the CT images of lungs (gray-level and RGB) directly, the images obtained by applying Local Binary Pattern (LBP) to these images (gray-level and RGB) and the images obtained by combining these images (gray-level and RGB). In the study, a 23-layer Convolutional Neural Networks (CNN) architecture was developed and used in classification processes. Leave-one-group-out cross validation method was used to test the proposed system. In this context, the result of the study indicated that the best AUC and EER values were obtained for the combination of original (RGB) and LBP applied (RGB) images, and these figures are 0,9811 and 0,0445 respectively. It was observed that, applying LBP to images, the use of CNN input causes an increase in sensitivity values while it causes a decrease in values of specificity. The highest sensitivity was obtained for the case of using LBP-applied (RGB) images and has a value of 0,9947. Within the scope of the study, the highest values of specificity and accuracy were obtained by the help of CT of lungs (gray-level) with 0,9120 and 95,32%, respectively. The results of the study indicate that analyzing images of lung CT using deep learning methods in diagnosing Covid-19 disease will speed up the diagnosis and significantly reduce the burden on healthcare workers.


Author(s):  
Shailaja Pasupuleti

Deaths caused due to Road Accidents has always been an area of grave concern and happens to be one of the most critical problems in India as on date. The inattentiveness of the driver causes almost 80% of the casualties. Utilization of mobile phones, talking to passengers, reaching behind to grab something, and drinking while driving are some reasons drivers may lose attention. Distractions are considered of numerous types, out of which we focus on the manual distraction, which is based on the driver's posture. In particular, we consider nine distinct distracted states of the driver. Then, our goal is to detect whether a given image of the driver falls into one of these categories. Eventually, we will integrate an alarm that will alert the driver if she/he is detected to be in a distracted state. Accordingly, this paper presents a mechanism where we use convolutional neural networks; a deep learning technique, to classify driver images. The image dataset we use to train and test our neural network consists of the first dataset made available publicly at the Kaggle data source.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document