scholarly journals Detection of Driver’s Distractedness Using Convolutional Neural Networks

Author(s):  
Shailaja Pasupuleti

Deaths caused due to Road Accidents has always been an area of grave concern and happens to be one of the most critical problems in India as on date. The inattentiveness of the driver causes almost 80% of the casualties. Utilization of mobile phones, talking to passengers, reaching behind to grab something, and drinking while driving are some reasons drivers may lose attention. Distractions are considered of numerous types, out of which we focus on the manual distraction, which is based on the driver's posture. In particular, we consider nine distinct distracted states of the driver. Then, our goal is to detect whether a given image of the driver falls into one of these categories. Eventually, we will integrate an alarm that will alert the driver if she/he is detected to be in a distracted state. Accordingly, this paper presents a mechanism where we use convolutional neural networks; a deep learning technique, to classify driver images. The image dataset we use to train and test our neural network consists of the first dataset made available publicly at the Kaggle data source.

2021 ◽  
pp. 1-12
Author(s):  
Gaurav Sarraf ◽  
Anirudh Ramesh Srivatsa ◽  
MS Swetha

With the ever-rising threat to security, multiple industries are always in search of safer communication techniques both in rest and transit. Multiple security institutions agree that any systems security can be modeled around three major concepts: Confidentiality, Availability, and Integrity. We try to reduce the holes in these concepts by developing a Deep Learning based Steganography technique. In our study, we have seen, data compression has to be at the heart of any sound steganography system. In this paper, we have shown that it is possible to compress and encode data efficiently to solve critical problems of steganography. The deep learning technique, which comprises an auto-encoder with Convolutional Neural Network as its building block, not only compresses the secret file but also learns how to hide the compressed data in the cover file efficiently. The proposed techniques can encode secret files of the same size as of cover, or in some sporadic cases, even larger files can be encoded. We have also shown that the same model architecture can theoretically be applied to any file type. Finally, we show that our proposed technique surreptitiously evades all popular steganalysis techniques.


2020 ◽  
Vol 9 (1) ◽  
pp. 7-10
Author(s):  
Hendry Fonda

ABSTRACT Riau batik is known since the 18th century and is used by royal kings. Riau Batik is made by using a stamp that is mixed with coloring and then printed on fabric. The fabric used is usually silk. As its development, comparing Javanese  batik with riau batik Riau is very slowly accepted by the public. Convolutional Neural Networks (CNN) is a combination of artificial neural networks and deeplearning methods. CNN consists of one or more convolutional layers, often with a subsampling layer followed by one or more fully connected layers as a standard neural network. In the process, CNN will conduct training and testing of Riau batik so that a collection of batik models that have been classified based on the characteristics that exist in Riau batik can be determined so that images are Riau batik and non-Riau batik. Classification using CNN produces Riau batik and not Riau batik with an accuracy of 65%. Accuracy of 65% is due to basically many of the same motifs between batik and other batik with the difference lies in the color of the absorption in the batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning   ABSTRAK   Batik Riau dikenal sejak abad ke 18 dan digunakan oleh bangsawan raja. Batik Riau dibuat dengan menggunakan cap yang dicampur dengan pewarna kemudian dicetak di kain. Kain yang digunakan biasanya sutra. Seiring perkembangannya, dibandingkan batik Jawa maka batik Riau sangat lambat diterima oleh masyarakat. Convolutional Neural Networks (CNN) merupakan kombinasi dari jaringan syaraf tiruan dan metode deeplearning. CNN terdiri dari satu atau lebih lapisan konvolutional, seringnya dengan suatu lapisan subsampling yang diikuti oleh satu atau lebih lapisan yang terhubung penuh sebagai standar jaringan syaraf. Dalam prosesnya CNN akan melakukan training dan testing terhadap batik Riau sehingga didapat kumpulan model batik yang telah terklasi    fikasi berdasarkan ciri khas yang ada pada batik Riau sehingga dapat ditentukan gambar (image) yang merupakan batik Riau dan yang bukan merupakan batik Riau. Klasifikasi menggunakan CNN menghasilkan batik riau dan bukan batik riau dengan akurasi 65%. Akurasi 65% disebabkan pada dasarnya banyak motif yang sama antara batik riau dengan batik lainnya dengan perbedaan terletak pada warna cerap pada batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning


Author(s):  
Ankita Singh ◽  
◽  
Pawan Singh

The Classification of images is a paramount topic in artificial vision systems which have drawn a notable amount of interest over the past years. This field aims to classify an image, which is an input, based on its visual content. Currently, most people relied on hand-crafted features to describe an image in a particular way. Then, using classifiers that are learnable, such as random forest, and decision tree was applied to the extract features to come to a final decision. The problem arises when large numbers of photos are concerned. It becomes a too difficult problem to find features from them. This is one of the reasons that the deep neural network model has been introduced. Owing to the existence of Deep learning, it can become feasible to represent the hierarchical nature of features using a various number of layers and corresponding weight with them. The existing image classification methods have been gradually applied in real-world problems, but then there are various problems in its application processes, such as unsatisfactory effect and extremely low classification accuracy or then and weak adaptive ability. Models using deep learning concepts have robust learning ability, which combines the feature extraction and the process of classification into a whole which then completes an image classification task, which can improve the image classification accuracy effectively. Convolutional Neural Networks are a powerful deep neural network technique. These networks preserve the spatial structure of a problem and were built for object recognition tasks such as classifying an image into respective classes. Neural networks are much known because people are getting a state-of-the-art outcome on complex computer vision and natural language processing tasks. Convolutional neural networks have been extensively used.


2019 ◽  
Author(s):  
Dan MacLean

AbstractGene Regulatory networks that control gene expression are widely studied yet the interactions that make them up are difficult to predict from high throughput data. Deep Learning methods such as convolutional neural networks can perform surprisingly good classifications on a variety of data types and the matrix-like gene expression profiles would seem to be ideal input data for deep learning approaches. In this short study I compiled training sets of expression data using the Arabidopsis AtGenExpress global stress expression data set and known transcription factor-target interactions from the Arabidopsis PLACE database. I built and optimised convolutional neural networks with a best model providing 95 % accuracy of classification on a held-out validation set. Investigation of the activations within this model revealed that classification was based on positive correlation of expression profiles in short sections. This result shows that a convolutional neural network can be used to make classifications and reveal the basis of those calssifications for gene expression data sets, indicating that a convolutional neural network is a useful and interpretable tool for exploratory classification of biological data. The final model is available for download and as a web application.


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


2019 ◽  
Vol 8 (3) ◽  
pp. 6873-6880

Palm leaf manuscripts has been one of the ancient writing methods but the palm leaf manuscripts content requires to be inscribed in a new set of leaves. This study has provided a solution to save the contents in palm leaf manuscripts by recognizing the handwritten Tamil characters in manuscripts and storing them digitally. Character recognition is one of the most essential fields of pattern recognition and image processing. Generally Optical character recognition is the method of e-translation of typewritten text or handwritten images into machine editable text. The handwritten Tamil character recognition has been one of the challenging and active areas of research in the field of pattern recognition and image processing. In this study a trial was made to identify Tamil handwritten characters without extraction of feature using convolutional neural networks. This study uses convolutional neural networks for recognizing and classifying the Tamil palm leaf manuscripts of characters from separated character images. The convolutional neural network is a deep learning approach for which it does not need to retrieve features and also a rapid approach for character recognition. In the proposed system every character is expanded to needed pixels. The expanded characters have predetermined pixels and these pixels are considered as characteristics for neural network training. The trained network is employed for recognition and classification. Convolutional Network Model development contains convolution layer, Relu layer, pooling layer, fully connected layer. The ancient Tamil character dataset of 60 varying class has been created. The outputs reveal that the proposed approach generates better rates of recognition than that of schemes based on feature extraction for handwritten character recognition. The accuracy of the proposed approach has been identified as 97% which shows that the proposed approach is effective in terms of recognition of ancient characters.


Author(s):  
M Venkata Krishna Reddy* ◽  
Pradeep S.

1. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren. Do Convolutional Neural Networks Learn Class Hierarchy? IEEE Transactions on Visualization and Computer Graphics, 24(1):152–162, Jan. 2018. 2. M. Carney, B. Webster, I. Alvarado, K. Phillips, N. Howell, J. Griffith, J. Jongejan, A. Pitaru, and A. Chen. Teachable Machine: Approachable Web-Based Tool for Exploring Machine Learning Classification. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20. ACM, Honolulu, HI, USA, 2020. 3. A. Karpathy. CS231n Convolutional Neural Networks for Visual Recognition, 2016 4. M. Kahng, N. Thorat, D. H. Chau, F. B. Viegas, and M. Wattenberg. GANLab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation. IEEE Transactions on Visualization and Computer Graphics, 25(1):310–320, Jan. 2019. 5. J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding Neural Networks Through Deep Visualization. In ICML Deep Learning Workshop, 2015 6. M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau. ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models. IEEE Transactions on Visualization and Computer Graphics, 24(1):88–97, Jan. 2018. 7. https://cs231n.github.io/convolutional-networks/ 8. https://www.analyticsvidhya.com/blog/2020/02/learn-imageclassification-cnn-convolutional-neural-networks-3-datasets/ 9. https://towardsdatascience.com/understanding-cnn-convolutionalneural- network-69fd626ee7d4 10. https://medium.com/@birdortyedi_23820/deep-learning-lab-episode-2- cifar- 10-631aea84f11e 11. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, and T. Chen. Recent advances in convolutional neural networks. Pattern Recognition, 77:354–377, May 2018. 12. Hamid, Y., Shah, F.A. and Sugumaram, M. (2014), ―Wavelet neural network model for network intrusion detection system‖, International Journal of Information Technology, Vol. 11 No. 2, pp. 251-263 13. G Sreeram , S Pradeep, K SrinivasRao , B.Deevan Raju , Parveen Nikhat , ― Moving ridge neuronal espionage network simulation for reticulum invasion sensing‖. International Journal of Pervasive Computing and Communications.https://doi.org/10.1108/IJPCC-05- 2020-0036 14. E. Stevens, L. Antiga, and T. Viehmann. Deep Learning with PyTorch. O’Reilly Media, 2019. 15. J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding Neural Networks Through Deep Visualization. In ICML Deep Learning Workshop, 2015. 16. Aman Dureja, Payal Pahwa, ―Analysis of Non-Linear Activation Functions for Classification Tasks Using Convolutional Neural Networks‖, Recent Advances in Computer Science , Vol 2, Issue 3, 2019 ,PP-156-161 17. https://missinglink.ai/guides/neural-network-concepts/7-types-neuralnetwork-activation-functions-right/


2020 ◽  
Vol 121 ◽  
pp. 103795 ◽  
Author(s):  
Ali Abbasian Ardakani ◽  
Alireza Rajabzadeh Kanafi ◽  
U. Rajendra Acharya ◽  
Nazanin Khadem ◽  
Afshin Mohammadi

2021 ◽  
Vol 5 (3) ◽  
pp. 584-593
Author(s):  
Naufal Hilmiaji ◽  
Kemas Muslim Lhaksmana ◽  
Mahendra Dwifebri Purbolaksono

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness. The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the same dataset.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Feng Liu ◽  
Xuan Zhou ◽  
Xuehu Yan ◽  
Yuliang Lu ◽  
Shudong Wang

Steganalysis is a method to detect whether the objects contain secret messages. With the popularity of deep learning, using convolutional neural networks (CNNs), steganalytic schemes have become the chief method of combating steganography in recent years. However, the diversity of filters has not been fully utilized in the current research. This paper constructs a new effective network with diverse filter modules (DFMs) and squeeze-and-excitation modules (SEMs), which can better capture the embedding artifacts. As the essential parts, combining three different scale convolution filters, DFMs can process information diversely, and the SEMs can enhance the effective channels out from DFMs. The experiments presented that our CNN is effective against content-adaptive steganographic schemes with different payloads, such as S-UNIWARD and WOW algorithms. Moreover, some state-of-the-art methods are compared with our approach to demonstrate the outstanding performance.


Sign in / Sign up

Export Citation Format

Share Document