Artificial Intelligence Based on Biological Neurons

Author(s):  
Rinat Galiautdinov

The chapter describes the new approach in artificial intelligence based on simulated biological neurons and creation of the neural circuits for the sphere of IoT which represent the next generation of artificial intelligence and IoT. Unlike existing technical devices for implementing a neuron based on classical nodes oriented to binary processing, the proposed path is based on simulation of biological neurons, creation of biologically close neural circuits where every device will implement the function of either a sensor or a “muscle” in the frame of the home-based live AI and IoT. The research demonstrates the developed nervous circuit constructor and its usage in building of the AI (neural circuit) for IoT.

Author(s):  
Rinat Galiautdinov

The chapter describes the new approach in artificial intelligence based on simulated biological neurons and creation of the neural circuits for the sphere of IoT which represent the next generation of artificial intelligence and IoT. Unlike existing technical devices for implementing a neuron based on classical nodes oriented to binary processing, the proposed path is based on simulation of biological neurons, creation of biologically close neural circuits where every device will implement the function of either a sensor or a “muscle” in the frame of the home based live AI and IoT. The research demonstrates the developed nervous circuit constructor and its usage in building of the AI (neural circuit) for IoT.


Author(s):  
Rinat Galiautdinov

The chapter describes the new approach in artificial intelligence based on simulated biological neurons and created neural circuits which represent the next generation of computing systems and artificial intelligence for business applications. Unlike existing technical devices for implementing a neuron based on classical nodes oriented to binary processing, the proposed path is based on bit-parallel processing of numerical data (synapses) for obtaining result. The proposed approach of implementation a neuron can serve as a new elementary basis for the construction of neuron-based computers with a higher processing speed of biological information and good survivability. The research demonstrates the developed nervous circuit constructor and its usage in building of the nervous circuits of biological creatures and simulation of their work and how it could be used in the next generation of the computing systems.


2020 ◽  
Vol 10 (2) ◽  
pp. 18-27
Author(s):  
Rinat Galiautdinov

This article describes the views on the architecture of distributed AI systems based on the simulated bio-neurons representing the basis for the bio-neural circuits, which represent distributed AI subsystems and serve as microservices for the AI client-side systems. The article also describes the interface and the demands to the protocol of communication with the distributed subsystems of the AI, the ways of tuning the synaptic contacts in the brand new neural circuits, which represent the distributed AI systems, and finally, the new approach to communication with such the systems based on the new computer language, which will be used in construction and tuning of such the AI systems.


2018 ◽  
Vol 9 (2) ◽  
pp. 1569-1578 ◽  
Author(s):  
Khaled Z. Abdelgawad ◽  
Mahmoud Elzenary ◽  
Salaheldin Elkatatny ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 74-83
Author(s):  
John Kang ◽  
Reid F. Thompson ◽  
Sanjay Aneja ◽  
Constance Lehman ◽  
Andrew Trister ◽  
...  

2020 ◽  
pp. 1-5
Author(s):  
Bahman Zohuri ◽  
◽  
Farhang Mossavar Rahmani ◽  

Companies such as Intel as a pioneer in chip design for computing are pushing the edge of computing from its present Classical Computing generation to the next generation of Quantum Computing. Along the side of Intel corporation, companies such as IBM, Microsoft, and Google are also playing in this domain. The race is on to build the world’s first meaningful quantum computer—one that can deliver the technology’s long-promised ability to help scientists do things like develop miraculous new materials, encrypt data with near-perfect security and accurately predict how Earth’s climate will change. Such a machine is likely more than a decade away, but IBM, Microsoft, Google, Intel, and other tech heavyweights breathlessly tout each tiny, incremental step along the way. Most of these milestones involve packing more quantum bits, or qubits—the basic unit of information in a quantum computer—onto a processor chip ever. But the path to quantum computing involves far more than wrangling subatomic particles. Such computing capabilities are opening a new area into dealing with the massive sheer volume of structured and unstructured data in the form of Big Data, is an excellent augmentation to Artificial Intelligence (AI) and would allow it to thrive to its next generation of Super Artificial Intelligence (SAI) in the near-term time frame.


Sign in / Sign up

Export Citation Format

Share Document