Extremely Fast Heuristic Event-Driven Job Shop Scheduler With a New Class of Extended Petri Nets

Author(s):  
Alexander Kostin

A very fast scheduling system is proposed and experimentally investigated. The system consists of a job shop manager and dynamic models of machines. A schedule is created in the course of a close cooperation with models of the machines that generate driving events for the scheduler. The system is implemented with a new class of extended Petri nets and runs in the environment of the Petri-net tool WINSIM. The scheduler creates a schedule sequentially, without any form of enumerative search. To investigate the scheduler performance, a large number of experiments were conducted with the use of few strategies. Due to a unique mechanism of monitoring of triggering events in the Petri net, the developed scheduler runs at least hundreds of times faster than any known single-processor job shop scheduler.

2009 ◽  
Vol 25 (03) ◽  
pp. 168-173
Author(s):  
Ji Wang ◽  
Yujun Liu ◽  
Zhuoshang Ji ◽  
Yanping Deng ◽  
Yuanyuan Zheng

The hull job shop in a shipyard is a typical flexible manufacturing system (FMS), the flexibility and efficiency of which largely depends on the level of FMS scheduling. In this paper, the Object-Oriented Colored Petri Net (OOCPN) is used to build the FMS model for the hull job shop. A four-step modeling method of FMS has been developed to successfully simulate the scheduling of the hull job shop.


1983 ◽  
Vol 6 (3-4) ◽  
pp. 333-374
Author(s):  
H.J.M. Goeman ◽  
L.P.J. Groenewegen ◽  
H.C.M. Kleijn ◽  
G. Rozenberg

This paper continues the investigation froll1 [Goeman et al.] concerning the use of sets of places of a Petri net as additional (to input places) constraints for granting concession. Now interpretations of more general constraints are considered and expressed as Boolean expressions. This gives rise to various classes of constrained Petri nets. These are compared in the language theoretical framework introduced in [Goeman et al.]. An upperbound for the language defining power is found in the class of context-free programmed languages.


1991 ◽  
Vol 14 (4) ◽  
pp. 477-491
Author(s):  
Waldemar Korczynski

In this paper an algebraic characterization of a class of Petri nets is given. The nets are characterized by a kind of algebras, which can be considered as a generalization of the concept of the case graph of a (marked) Petri net.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 37879-37890
Author(s):  
Ji Qiu ◽  
Lide Wang ◽  
Yin Wang ◽  
Yu Hen Hu

2008 ◽  
Vol 44-46 ◽  
pp. 537-544
Author(s):  
Shi Yi Bao ◽  
Jian Xin Zhu ◽  
Li J. Wang ◽  
Ning Jiang ◽  
Zeng Liang Gao

The quantitative analysis of “domino” effects is one of the main aspects of hazard assessment in chemical industrial park. This paper demonstrates the application of heterogeneous stochastic Petri net modeling techniques to the quantitative assessment of the probabilities of domino effects of major accidents in chemical industrial park. First, five events are included in the domino effect models of major accidents: pool fire, explosion, boiling liquid expanding vapour explosion (BLEVE) giving rise to a fragment, jet fire and delayed explosion of a vapour cloud. Then, the domino effect models are converted into Generalized Stochastic Petri net (GSPN) in which the probability of the domino effect is calculated automatically. The Stochastic Petri nets’ models, which are state-space based ones, increase the modeling flexibility but create the state-space explosion problems. Finally, in order to alleviate the state-space explosion problems of GSPN models, this paper employs Stochastic Wellformed Net (SWN), a particular class of High-Level (colored) SPN. To conduct a case study on a chemical industrial park, the probability of domino effects of major accidents is calculated by using the GSPN model and SWN model in this paper.


1998 ◽  
Vol 08 (01) ◽  
pp. 21-66 ◽  
Author(s):  
W. M. P. VAN DER AALST

Workflow management promises a new solution to an age-old problem: controlling, monitoring, optimizing and supporting business processes. What is new about workflow management is the explicit representation of the business process logic which allows for computerized support. This paper discusses the use of Petri nets in the context of workflow management. Petri nets are an established tool for modeling and analyzing processes. On the one hand, Petri nets can be used as a design language for the specification of complex workflows. On the other hand, Petri net theory provides for powerful analysis techniques which can be used to verify the correctness of workflow procedures. This paper introduces workflow management as an application domain for Petri nets, presents state-of-the-art results with respect to the verification of workflows, and highlights some Petri-net-based workflow tools.


2012 ◽  
Vol 58 (4) ◽  
pp. 397-402 ◽  
Author(s):  
Michał Doligalski ◽  
Marian Adamski

Abstract The paper presents method for hierarchical configurable Petri nets description in VHDL language. Dual model is an alternative way for behavioral description of the discrete control process. Dual model consists of two correlated models: UML state machine diagram and hierarchical configurable Petri net (HCfgPN). HCfgPN are Petri nets variant with direct support of exceptions handling mechanism. Logical synthesis of dual model is realized by the description of HCfgPN model by means of hardware description language. The paper presents placesoriented method for HCfgPN description in VHDL language


Sign in / Sign up

Export Citation Format

Share Document