Food Waste Reduction Towards Food Sector Sustainability

Author(s):  
Giovanni Lagioia ◽  
Vera Amicarelli ◽  
Teodoro Gallucci ◽  
Christian Bux

FAO estimates on average more than 1.3 billion tons of food loss and waste (FLW) along the whole food supply chain (equivalent to one-third of total food production) of which more than 670 million tons in developed countries and approximately 630 million tons in developing ones, showing wide differences between countries. In particular, EU data estimates an amount of more than 85 million tons of FLW, equal to approximately 20% of total food production. This research presents two main goals. First, to review the magnitude of FLW at a global and European level and its environmental, social and economic implications. Second, use Material Flow Analysis (MFA) to support and improve FLW management and its application in an Italian potato industry case study. According to the case study presented, MFA has demonstrated the advantages of tracking input and output to prevent FLW and how they provide economic, social, and environmental opportunities.

Author(s):  
Giovanni Lagioia ◽  
Vera Amicarelli ◽  
Teodoro Gallucci ◽  
Christian Bux

FAO estimates on average more than 1.3 billion tons of food loss and waste (FLW) along the whole food supply chain (equivalent to one-third of total food production) of which more than 670 million tons in developed countries and approximately 630 million tons in developing ones, showing wide differences between countries. In particular, EU data estimates an amount of more than 85 million tons of FLW, equal to approximately 20% of total food production. This research presents two main goals. First, to review the magnitude of FLW at a global and European level and its environmental, social and economic implications. Second, use Material Flow Analysis (MFA) to support and improve FLW management and its application in an Italian potato industry case study. According to the case study presented, MFA has demonstrated the advantages of tracking input and output to prevent FLW and how they provide economic, social, and environmental opportunities.


2020 ◽  
Vol 123 (1) ◽  
pp. 67-85 ◽  
Author(s):  
Vera Amicarelli ◽  
Christian Bux ◽  
Giovanni Lagioia

PurposeThe purpose of this paper is to measure food loss and waste by material flow analysis (MFA) tool. Applying this methodology, the authors estimate wastage-related losses and discuss opportunities for more circular and sustainable practices in the Italian potato industry.Design/methodology/approachMFA is applied to two specific typologies as follows: ready-to-eat (chips) and dried potato products produced in Italy. The analysis refers to the year 2017 as the complete dataset useful for this study includes measurements until this year. A bottom-up and top-down mixed approach is applied, and functional unit refers to 1 t of potatoes consumed as final product.FindingsMFA is applied to quantify and qualify material balance associated with 1 t of potatoes consumed as final product. In Italy, in 2017, more than 22,000 t of fresh tubers were lost, including 3,500–4,800 t of starch, equivalent to 52,800–72,600 GJs. Moreover, fewer than 23,000 t of skins and scraps were produced within industrial plants, not available for food but suitable for animal feed (dry skins are an excellent carbohydrates source in cattle and poultry feed), starch industry and bioenergy production (biogas and/or bioethanol).Originality/valueThis research is one of the few studies proposing MFA methodology as a tool to measure food waste. This analysis shows its utility in terms of food waste quality/quantity evaluation, supporting both company management and policymakers.


2008 ◽  
Vol 3 (3) ◽  
pp. 367-374 ◽  
Author(s):  
Heping Huang ◽  
Jun Bi ◽  
Xiangmei Li ◽  
Bing Zhang ◽  
Jie Yang

2009 ◽  
Vol 59 (10) ◽  
pp. 1911-1920 ◽  
Author(s):  
F. Meinzinger ◽  
K. Kröger ◽  
R. Otterpohl

Material Flow Analysis is a method that can be used to assess sanitation systems with regard to their environmental impacts. Modelling water and nutrients flows of the urban water, wastewater and waste system can highlight risks for environmental pollution and can help evaluating the potential for linking sanitation with resource recovery and agricultural production. This study presents the results of an analysis of nitrogen and phosphorus flows of Arba Minch town in South Ethiopia. The current situation is modelled and possible scenarios for upgrading the town's sanitation system are assessed. Two different scenarios for nutrient recovery are analysed. Scenario one includes co-composting municipal organic waste with faecal sludge from pit latrines and septic tanks as well as the use of compost in agriculture. The second scenario based on urine-diversion toilets includes application of urine as fertiliser and composting of faecal matter. In order to allow for variations in the rate of adoption, the model can simulate varying degrees of technology implementation. Thus, the impact of a step-wise or successive approach can be illustrated. The results show that significant amounts of plant nutrients can be provided by both options, co-composting and urine diversion.


2020 ◽  
Vol 12 (11) ◽  
pp. 4358
Author(s):  
Georg Schiller ◽  
Tamara Bimesmeier ◽  
Anh T.V. Pham

Urbanization is a global trend: Since 2007 more than 50% of the world’s population have been living in urban areas, and rates of urbanization are continuing to rise everywhere. This growth in urbanization has led to an increased demand for natural resources, in particular non-metallic minerals such as stones, sand and clay, which account for one third of the entire flow of materials. Generally, these materials are traded within regional markets. This close geographical link between the demand for building materials in urban areas and the material supply in the hinterland leads to massive interventions in the natural environment and landscape. These urban–rural linkages can be revealed by applying Material Flow Analysis (MFA) to the built environment in order to trace the flows of building materials. The objective of this paper is to present a method for quantifying regional material flows by considering the supply and demand of building materials. This will be applied to the Vietnamese case study area of Hanoi and its hinterland province Hoa Binh. The results indicate a consumption of almost 60% of the construction mineral reserves in total secured by planning in the hinterland province considering a period of 15 years. However, this does not allow for the general conclusion that raw materials are sufficiently available. The sand reservoirs are only sufficient for eight years and clay reserves are used up after four years. This increases the need to exploit further raw material reserves, which are becoming increasingly scarce and results in stronger interventions in nature In order to safeguard the hinterland from the negative impacts of urbanization, a new understanding of resource efficiency is needed—one that acknowledges both resource efficiency in the construction of urban structures and appropriate resource conservation in the provision of the raw materials from the hinterland. This will require the creation of new integrated planning approaches between urban and regional planning authorities. Regional MFA is one way of realising such an approach.


2020 ◽  
Vol 148 ◽  
pp. 05002 ◽  
Author(s):  
I Made Wahyu Widyarsana ◽  
Elprida Agustina

The aim of this paper is to identify patterns of waste management in the Bali archipelago tourism area. The Nusa Penida District is a new tourism destination located in the Southeast of Bali. In 2018, there were average 391,071 tourists/day coming and 45,520 local residents live in this area. The total amount of waste produced in Nusa Penida District is 15.90 tonnes/day or 173.61 m3/day. High tourist activities have not been handled by a good waste management. Questionnaires were distributed randomly to the public and tourists to find out the pattern of waste management. Observation also conducted to build the material flow analysis as a waste information baseline. Around 48.21% organic waste used as livestock feed and 8.45% dumped carelessly to the environment. Around 32.51% anorganic waste be burnt and 45.68% waste dumped carelessly. Moreover, Nusa Penida District facing offering waste management problem caused by their cultural activities. In total, around 8.82 tonnes/day waste is dumped in landfills and total unmanaged waste around 6.73 tonnes/day.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 509 ◽  
Author(s):  
Julie Gobert ◽  
Romain Allais

This research aims at understanding better the nature of stakeholders’ resistance to and interest in repair and reuse. In fact, the authors assume that in the future waste management could be less centralized using a network of territorialized initiatives based on repair and reuse activities with high social and environmental values. Such system innovation requires tools and methods to support analysis and facilitate decision-making in multi-stakeholders, multi-scales systems. The framework for spatiotemporal analysis of territorial projects considers a project’s stakeholder network and the way they mobilize resources. These resources may be tangible or intangible, brought by individuals, organizations or even the territory. This communication focuses on the implementation of such an analysis in the community of communes Coeur de Savoie, to understand how local initiatives emerge and on which interactions and resources they are based. This paper proposes feedback on the implementation of the spatio-temporal analysis in one case study (Coeur de Savoie), and provides insights to build new networks promoting reuse and repair.


Sign in / Sign up

Export Citation Format

Share Document