Supercritical Fluids and Their Applications in Power Generation

Author(s):  
Huijuan Chen ◽  
Ricardo Vasquez Padilla ◽  
Saeb Besarati

Supercritical fluids have been studied and used as the working fluids in power generation system for both high- and low-grade heat conversions. Low-grade heat sources, typically defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for power conversion because of the low conversion efficiency. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop. First part of this chapter investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat to power, while the second part discusses supercritical fluids used in higher grade heat conversion system. The selection of supercritical working fluids for a supercritical Rankine cycle is of key importance. This chapter discusses supercritical fluids fundamentals, selection of supercritical working fluids for different heat sources, and the current research, development, and commercial status of supercritical power generation systems.

Author(s):  
Huijuan Chen ◽  
Ricardo Vasquez Padilla ◽  
Saeb Besarati

Supercritical fluids have been studied and used as the working fluids in power generation system for both high- and low-grade heat conversions. Low-grade heat sources, typically defined as below 300 ºC, are abundantly available as industrial waste heat, solar thermal, and geothermal, to name a few. However, they are under-exploited for power conversion because of the low conversion efficiency. Technologies that allow the efficient conversion of low-grade heat into mechanical or electrical power are very important to develop. First part of this chapter investigates the potential of supercritical Rankine cycles in the conversion of low-grade heat to power, while the second part discusses supercritical fluids used in higher grade heat conversion system. The selection of supercritical working fluids for a supercritical Rankine cycle is of key importance. This chapter discusses supercritical fluids fundamentals, selection of supercritical working fluids for different heat sources, and the current research, development, and commercial status of supercritical power generation systems.


Author(s):  
M. Deligant ◽  
S. Braccio ◽  
T. Capurso ◽  
F. Fornarelli ◽  
M. Torresi ◽  
...  

Abstract The Organic Rankine Cycle (ORC) allows the conversion of low-grade heat sources into electricity. Although this technology is not new, the increase in energy demand and the need to reduce CO2 emissions create new opportunities to harvest low grade heat sources such as waste heat. Radial turbines have a simple construction, they are robust and they are not very sensitive to geometry inaccuracies. Most of the radial inflow turbines used for ORC application feature a vaned nozzle ensuring the appropriate distribution angle at the rotor inlet. In this work, no nozzle is considered but only the vaneless gap (distributor). This configuration, without any vaned nozzle, is supposed to be more flexible under varying operating conditions with respect to fixed vanes and to maintain a good efficiency at off-design. This paper presents a performance analysis carried out by means of two approaches: a combination of meanline loss models enhanced with real gas fluid properties and 3D CFD computations, taking into account the entire turbomachine including the scroll housing, the vaneless gap, the turbine wheel and the axial discharge pipe. A detailed analysis of the flow field through the turbomachine is carried out, both under design and off design conditions, with a particular focus on the entropy field in order to evaluate the loss distribution between the scroll housing, the vaneless gap and the turbine wheel.


Author(s):  
Weera Punin ◽  
Somchai Maneewan ◽  
Chantana Punlek

In the current work, a thermoelectric power generation system was designed for an assessment of opportunities in terms of electricity production through the utilization of waste heat from sugarcane industries. In this study, the thermoelectric cooling of TEC1-12708T200 was appropriate for use in electric power generation from low-grade heat sources. The experiments used ten thermoelectric modules and an aluminum water block installed on the exterior surface area of a sugar boiler to achieve the same water flow as a traditional system. The results revealed that the power generation system could generate about 30 W (25.7 V, 1.17 A) at a matched load of approximately 36.8 Ω. The thermoelectric power generation system could convert 12.5% of heat energy into electrical energy. Therefore, the thermoelectric power generation system designed in this study could be an effective alternative for waste heat recovery in sugarcane industries.


Author(s):  
C. Somayaji ◽  
P. J. Mago ◽  
L. M. Chamra

This paper presents a second law analysis and optimization for the use of Organic Rankine Cycle “ORC” to convert waste energy to power from low grade heat sources. The working fluids used in this study are organic substances which have a low boiling point and a low latent heat for using low grade waste heat sources. The organic working fluids under investigation are R134a and R113 and their results are compared with those of ammonia and water under similar operating conditions. A combined first and second law analysis is performed by varying some system operating parameters at various reference temperatures. Some of the results show that the efficiency of ORC is typically below 20% depending on the temperatures and matched working fluid. In addition, it has been found that organic working fluids are more suited for heat recovery than water for low temperature applications, which justifies the use of organic working fluids at the lower waste source temperatures.


2021 ◽  
Vol 9 ◽  
Author(s):  
Enhua Wang ◽  
Ningjian Peng ◽  
Mengru Zhang

Improving energy efficiency and reducing carbon emissions are crucial for the technological advancement of power systems. Various carbon dioxide (CO2) power cycles have been proposed for various applications. For high-temperature heat sources, the CO2 power system is more efficient than the ultra-supercritical steam Rankine cycle. As a working fluid, CO2 exhibits environmentally friendly properties. CO2 can be used as an alternative to organic working fluids in small- and medium-sized power systems for low-grade heat sources. In this paper, the main configurations and performance characteristics of CO2 power systems are reviewed. Furthermore, recent system improvements of CO2 power cycles, including supercritical Brayton cycles and transcritical Rankine cycles, are presented. Applications of combined systems and their economic performance are discussed. Finally, the challenges and potential future developments of CO2 power cycles are discussed. CO2 power cycles have their advantages in various applications. As working fluids must exhibit environmentally-friendly properties, CO2 power cycles provide an alternative for power generation, especially for low-grade heat sources.


Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. A supercritical Rankine cycle does not go through two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process happens non-isothermally. Both of the features create a potential in reducing the irreversibility and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle improves the cycle thermal efficiency, exergy efficiency of the heating and the condensation processes, and the system overall efficiency.


Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev

Abstract A continued increase in both energy demand and greenhouse gas emissions (GHGs) call for utilising energy sources effectively. In comparison with traditional energy set-ups, micro-combined heat and power (micro-CHP) generation is viewed as an effective alternative; the aforementioned system’s definite electrical and thermal generation may be attributed to an augmented energy efficiency, decreased capacity as well as GHGs percentage. In this regard, organic Rankine cycle (ORC) has gained increasing recognition as a system, which is capable for generating electrical power from solar-based, waste heat, or thermal energy sources of a lower quality, for instance, below 120 °C. This study focuses on investigating a solar-based micro-CHP system’s performance for use in residential buildings through utilising a regenerative ORC. The analysis will focus on modelling and simulation as well as optimisation of operating condition of several working fluids (WFs) in ORC in order to use a heat source with low-temperature derived from solar thermal collectors for both heat and power generation. A parametric study has been carried out in detail for analysing the effects of different WFs at varying temperatures and flowrates from hot and cold sources on system performance. Significant changes were revealed in the study’s outcomes regarding performance including efficiency as well as power obtained from the expander and generator, taking into account the different temperatures of hot and cold sources for each WF. Work extraction carried out by the expander and electrical power had a range suitable for residential building applications; this range was 0.5–5 kWe with up to 60% electrical isentropic efficiency and up to 8% cycle efficiency for 50–120 °C temperature from a hot source. The operation of WFs will occur in the hot source temperature range, allowing the usage of either solar flat plate or evacuated tube collectors.


Author(s):  
Andrea Meroni ◽  
Jesper Graa Andreasen ◽  
Leonardo Pierobon ◽  
Fredrik Haglind

Organic Rankine cycle (ORC) power systems represent attractive solutions for power conversion from low temperature heat sources, and the use of these power systems is gaining increasing attention in the marine industry. This paper proposes the combined optimal design of cycle and expander for an organic Rankine cycle unit utilizing waste heat from low temperature heat sources. The study addresses a case where the minimum temperature of the heat source is constrained and a case where no constraint is imposed. The former case is the waste heat recovery from jacket cooling water of a marine diesel engine onboard a large ship, and the latter is representative of a low-temperature geothermal, solar or waste heat recovery application. Multi-component working fluids are investigated, as they allow improving the match between the temperature profiles in the heat exchangers and, consequently, reducing the irreversibility in the ORC system. This work considers mixtures of R245fa/pentane and propane/isobutane. The use of multi-component working fluids typically results in increased heat transfer areas and different expander designs compared to pure fluids. In order to properly account for turbine performance and design constraints in the cycle calculation, the thermodynamic cycle and the turbine are optimized simultaneously in the molar composition range of each mixture. Such novel optimization approach enables one to identify to which extent the cycle or the turbine behaviour influences the selection of the optimal solution. It also enables one to find the composition for which an optimal compromise between cycle and turbine performance is achieved. The optimal ORC unit employs pure R245fa and provides approximately 200 kW when the minimum hot fluid temperature is constrained. Conversely, the mixture R245fa/pentane (0.5/0.5) is selected and provides approximately 444 kW when the hot fluid temperature is not constrained to a lower value. In both cases, a compact and efficient turbine can be manufactured.


Sign in / Sign up

Export Citation Format

Share Document