zeotropic mixture
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 39)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012072
Author(s):  
A. S. Shamirzaev

Abstract This paper presents experimental data on heat transfer of a binary zeotropic mixture of refrigerants R32/R134a in a microchannel heat exchanger with a high specific surface within a range of parameters that is practically important for the development of cooling systems for microelectronics and space technology. The experiments were carried out in a horizontal heat exchanger with one-sided heating of a copper microchannel plate 20x40 mm, containing 21 rectangular microchannels with a cross-section of 335x930 μm, within the range of mass fluxes from 80 to 250 kg/m2s, and at an absolute pressure in the system ranged from 12 to 14 bar. A zeotropic mixture of refrigerants R32/R134a with a molar concentration of the initial mixture of 65%/35% was used as a working fluid. Experimental data were compared with model-based calculations that take into account the influence of changes in the concentrations of components in the liquid and gas phases.


2021 ◽  
Vol 244 ◽  
pp. 114419
Author(s):  
Xiaocun Sun ◽  
Lingfeng Shi ◽  
Hua Tian ◽  
Xuan Wang ◽  
Yonghao Zhang ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 954
Author(s):  
Zineb Fergani ◽  
Tatiana Morosuk ◽  
Djamel Touil

In this paper, the performance of an organic Rankine cycle with a zeotropic mixture as a working fluid was evaluated using exergy-based methods: exergy, exergoeconomic, and exergoenvironmental analyses. The effect of system operation parameters and mixtures on the organic Rankine cycle’s performance was evaluated as well. The considered performances were the following: exergy efficiency, specific cost, and specific environmental effect of the net power generation. A multi-objective optimization approach was applied for parametric optimization. The approach was based on the particle swarm algorithm to find a set of Pareto optimal solutions. One final optimal solution was selected using a decision-making method. The optimization results indicated that the zeotropic mixture of cyclohexane/toluene had a higher thermodynamic and economic performance, while the benzene/toluene zeotropic mixture had the highest environmental performance. Finally, a comparative analysis of zeotropic mixtures and pure fluids was conducted. The organic Rankine cycle with the mixtures as working fluids showed significant improvement in energetic, economic, and environmental performances.


2021 ◽  
Author(s):  
Bobby D. Middleton ◽  
Patrick V. Brady ◽  
Serafina Lawles

Abstract Sandia National Laboratories (SNL) is developing a cooling technology concept — the Sandia National Laboratories Natural Circulation Cooler (SNLNCC) — that has potential to greatly improve the economic viability of hybrid cooling for power plants. The SNLNCC is a patented technology that holds promise for improved dry heat rejection capabilities when compared to currently available technologies. The cooler itself is a dry heat rejection device, but is conceptualized here as a heat exchanger used in conjunction with a wet cooling tower, creating a hybrid cooling system for a thermoelectric power plant. The SNLNCC seeks to improve on currently available technologies by replacing the two-phase refrigerant currently used with either a supercritical fluid — such as supercritical CO2 (sCO2) — or a zeotropic mixture of refrigerants. In both cases, the heat being rejected by the water to the SNLNCC would be transferred over a range of temperatures, instead of at a single temperature as it is in a thermosyphon. This has the potential to improve the economics of dry heat rejection performance in three ways: decreasing the minimum temperature to which the water can be cooled, increasing the temperature to which air can be heated, and increasing the fraction of the year during which dry cooling is economically viable. This paper describes the experimental basis and the current state of the SNLNCC.


Sign in / Sign up

Export Citation Format

Share Document