Breast Cancer Detection Using Random Forest Classifier

Author(s):  
Pavithra Suchindran ◽  
Vanithamani R. ◽  
Judith Justin

Breast cancer is the second most prevalent type of cancer among women. Breast ultrasound (BUS) imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities in the breast. To improve the diagnostic accuracy, computer-aided diagnosis (CAD) system is helpful for breast cancer detection and classification. Normally, a CAD system consists of four stages: pre-processing, segmentation, feature extraction, and classification. In this chapter, the pre-processing step includes speckle noise removal using speckle reducing anisotropic diffusion (SRAD) filter. The goal of segmentation is to locate the region of interest (ROI) and active contour-based segmentation and fuzzy C means segmentation (FCM) are used in this work. The texture features are extracted and fed to a classifier to categorize the images as normal, benign, and malignant. In this work, three classifiers, namely k-nearest neighbors (KNN) algorithm, decision tree algorithm, and random forest classifier, are used and the performance is compared based on the accuracy of classification.

The early detection, diagnosis, prediction, and treatment of breast cancer are challenginghealthcare problems. This study focuses on outlining the traditional and trending techniques used for breast cancer detection, diagnosis, and prediction, including trending noninvasive, nonionizing, and biomarker genetic techniques.In addition, a Computer Aided Detection (CAD) is introduced to classify benign and malignant tumors in mammograms. This CAD system involves three steps. First, the Region of Interest (ROI) that includesthe tumor is identified using a threshold-based method. Second, a deep learning Convolutional Neural Network (CNN) processes the ROI to extract relevant mammogram features. Finally, a Support Vector Machine (SVM) classifier is used to decode two classes of mammogram structures (i.e., Benign (B), and Malignant (M) nodules). The training processes and implementations were carried out using 2800 mammogram images taken from the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). Results have shown that the accuracy of CNN-SVM system achieves 85.1% using AlexNet CNN. Comparison with related work shows the promise of the proposed CAD system


2010 ◽  
Vol 36 (3) ◽  
pp. 1503-1510 ◽  
Author(s):  
U. Rajendra Acharya ◽  
E. Y. K. Ng ◽  
Jen-Hong Tan ◽  
S. Vinitha Sree

Author(s):  
Nazila Darabi ◽  
Abdalhossein Rezai ◽  
Seyedeh Shahrbanoo Falahieh Hamidpour

Breast cancer is a common cancer in female. Accurate and early detection of breast cancer can play a vital role in treatment. This paper presents and evaluates a thermogram based Computer-Aided Detection (CAD) system for the detection of breast cancer. In this CAD system, the Random Subset Feature Selection (RSFS) algorithm and hybrid of minimum Redundancy Maximum Relevance (mRMR) algorithm and Genetic Algorithm (GA) with RSFS algorithm are utilized for feature selection. In addition, the Support Vector Machine (SVM) and k-Nearest Neighbors (kNN) algorithms are utilized as classifier algorithm. The proposed CAD system is verified using MATLAB 2017 and a dataset that is composed of breast images from 78 patients. The implementation results demonstrate that using RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 85.36% and 75%, and sensitivity of 94.11% and 79.31%, respectively. In addition, using hybrid GA and RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 83.87% and 69.56%, and sensitivity of 96% and 81.81%, respectively, and using hybrid mRMR and RSFS algorithms for feature selection and kNN and SVM algorithms as classifier have accuracy of 77.41% and 73.07%, and sensitivity of 98% and 72.72%, respectively.


Author(s):  
Nanchen Nimyel Caleb ◽  
Selfa Johnson Zwalnan ◽  
Cornelius A. Pahalson

Breast cancer is the second most common cancer in women after skin cancer. When cancer care is delayed or inaccessible, there is a lower chance of survival, greater problems associated with treatment and higher costs of care. Early diagnosis improves cancer outcomes and leads to a better prognosis. In third world countries like Nigeria, where state-of-the art breast cancer diagnostic machines and the experts are grossly insufficient, alternative approaches to early diagnosis of breast cancer must be evolved. These preliminary data obtained from images of suspected cases of breast cancer are transformed in profiles of breast diseases, which are used by the local physicians in charge of breast disease patients. Each new case can then be compared by the local treating physician with the profile of all preceded cases with the same diagnosis. Three supervised learning models; Logistic Regression. Random Forest Classifier, and K-Nearest Neighbors were used to train the cancer dataset, and Random Forest Classifier outperformed with accuracy of 96% and an almost perfect sensitivity/Recall index. The dataset could not capture the demographic effects of the breast cancer images on the diagnosis, which now opens up new research areas in this study of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document