scholarly journals Breast Cancer Detection, Diagnosis, and Prediction

The early detection, diagnosis, prediction, and treatment of breast cancer are challenginghealthcare problems. This study focuses on outlining the traditional and trending techniques used for breast cancer detection, diagnosis, and prediction, including trending noninvasive, nonionizing, and biomarker genetic techniques.In addition, a Computer Aided Detection (CAD) is introduced to classify benign and malignant tumors in mammograms. This CAD system involves three steps. First, the Region of Interest (ROI) that includesthe tumor is identified using a threshold-based method. Second, a deep learning Convolutional Neural Network (CNN) processes the ROI to extract relevant mammogram features. Finally, a Support Vector Machine (SVM) classifier is used to decode two classes of mammogram structures (i.e., Benign (B), and Malignant (M) nodules). The training processes and implementations were carried out using 2800 mammogram images taken from the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). Results have shown that the accuracy of CNN-SVM system achieves 85.1% using AlexNet CNN. Comparison with related work shows the promise of the proposed CAD system

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6201 ◽  
Author(s):  
Dina A. Ragab ◽  
Maha Sharkas ◽  
Stephen Marshall ◽  
Jinchang Ren

It is important to detect breast cancer as early as possible. In this manuscript, a new methodology for classifying breast cancer using deep learning and some segmentation techniques are introduced. A new computer aided detection (CAD) system is proposed for classifying benign and malignant mass tumors in breast mammography images. In this CAD system, two segmentation approaches are used. The first approach involves determining the region of interest (ROI) manually, while the second approach uses the technique of threshold and region based. The deep convolutional neural network (DCNN) is used for feature extraction. A well-known DCNN architecture named AlexNet is used and is fine-tuned to classify two classes instead of 1,000 classes. The last fully connected (fc) layer is connected to the support vector machine (SVM) classifier to obtain better accuracy. The results are obtained using the following publicly available datasets (1) the digital database for screening mammography (DDSM); and (2) the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). Training on a large number of data gives high accuracy rate. Nevertheless, the biomedical datasets contain a relatively small number of samples due to limited patient volume. Accordingly, data augmentation is a method for increasing the size of the input data by generating new data from the original input data. There are many forms for the data augmentation; the one used here is the rotation. The accuracy of the new-trained DCNN architecture is 71.01% when cropping the ROI manually from the mammogram. The highest area under the curve (AUC) achieved was 0.88 (88%) for the samples obtained from both segmentation techniques. Moreover, when using the samples obtained from the CBIS-DDSM, the accuracy of the DCNN is increased to 73.6%. Consequently, the SVM accuracy becomes 87.2% with an AUC equaling to 0.94 (94%). This is the highest AUC value compared to previous work using the same conditions.


Author(s):  
Pavithra Suchindran ◽  
Vanithamani R. ◽  
Judith Justin

Breast cancer is the second most prevalent type of cancer among women. Breast ultrasound (BUS) imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities in the breast. To improve the diagnostic accuracy, computer-aided diagnosis (CAD) system is helpful for breast cancer detection and classification. Normally, a CAD system consists of four stages: pre-processing, segmentation, feature extraction, and classification. In this chapter, the pre-processing step includes speckle noise removal using speckle reducing anisotropic diffusion (SRAD) filter. The goal of segmentation is to locate the region of interest (ROI) and active contour-based segmentation and fuzzy C means segmentation (FCM) are used in this work. The texture features are extracted and fed to a classifier to categorize the images as normal, benign, and malignant. In this work, three classifiers, namely k-nearest neighbors (KNN) algorithm, decision tree algorithm, and random forest classifier, are used and the performance is compared based on the accuracy of classification.


2021 ◽  
Vol 45 (2) ◽  
pp. 227-234
Author(s):  
L.M. Wisudawati ◽  
S. Madenda ◽  
E.P. Wibowo ◽  
A.A. Abdullah

Breast cancer is a leading cause of death in women due to cancer. According to WHO in 2018, it is estimated that 627.000 women died from breast cancer, that is approximately 15 % of all cancer deaths among women [3]. Early detection is a very important factor to reduce mortality by 25-30 %. Mammography is the most commonly used technique in detecting breast cancer using a low-dose X-ray system in the examination of breast tissue that can reduce false positives. A Computer-Aided Detection (CAD) system has been developed to effectively assist radiologists in detecting masses on mammograms that indicate the presence of breast tumors. The type of abnormality in mammogram images can be seen from the presence of microcalcifications and the presence of mass lesions. In this research, a new approach was developed to improve the performance of CAD System for classifying benign and malignant tumors. Areas suspected of being masses (RoI) in mammogram images were detected using an adaptive thresholding method and mathematical morphological operations. Wavelet decomposition is performed on the Region of Interest (RoI) and the feature extraction process is performed using a GLCM method with 4 statistical features, namely, contrast, correlation, entropy, and homogeneity. Classification of benign and malignant tumors using the MIAS database provided an accuracy of 95.83 % with a sensitivity of 95.23 % and a specificity of 96.49 %. A comparison with other methods illustrates that the proposed method provides better performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ivan L. Milankovic ◽  
Nikola V. Mijailovic ◽  
Nenad D. Filipovic ◽  
Aleksandar S. Peulic

Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler’s acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.


2020 ◽  
Vol 13 (2) ◽  
pp. 181-205
Author(s):  
Rajeshwari S. Patil ◽  
Nagashettappa Biradar

PurposeBreast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays, mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer. Though, due to the intricate formation of mammogram images, it is reasonably hard for practitioners to spot breast cancer features.Design/methodology/approachBreast cancer is one of the most common malignant tumors in women, which badly have an effect on women's physical and psychological health and even danger to life. Nowadays, mammography is considered as a fundamental criterion for medical practitioners to recognize breast cancer. Though, due to the intricate formation of mammogram images, it is reasonably hard for practitioners to spot breast cancer features.FindingsThe performance analysis was done for both segmentation and classification. From the analysis, the accuracy of the proposed IAP-CSA-based fuzzy was 41.9% improved than the fuzzy classifier, 2.80% improved than PSO, WOA, and CSA, and 2.32% improved than GWO-based fuzzy classifiers. Additionally, the accuracy of the developed IAP-CSA-fuzzy was 9.54% better than NN, 35.8% better than SVM, and 41.9% better than the existing fuzzy classifier. Hence, it is concluded that the implemented breast cancer detection model was efficient in determining the normal, benign and malignant images.Originality/valueThis paper adopts the latest Improved Awareness Probability-based Crow Search Algorithm (IAP-CSA)-based Region growing and fuzzy classifier for enhancing the breast cancer detection of mammogram images, and this is the first work that utilizes this method.


2010 ◽  
Vol 36 (3) ◽  
pp. 1503-1510 ◽  
Author(s):  
U. Rajendra Acharya ◽  
E. Y. K. Ng ◽  
Jen-Hong Tan ◽  
S. Vinitha Sree

2011 ◽  
Vol 62 (1) ◽  
pp. 60-72 ◽  
Author(s):  
Anabel M. Scaranelo ◽  
Bridgette Lord ◽  
Riham Eiada ◽  
Stefan O. Hofer

Advances in breast imaging over the last 15 years have improved early breast cancer detection and management. After treatment for breast cancer, many women choose to have reconstructive surgery. In addition, with the availability of widespread genetic screening for breast cancer, an increasing number of women are choosing prophylactic mastectomies and subsequent breast reconstruction. The purpose of this pictorial essay is to present the spectrum of imaging findings in the reconstructed breast.


Author(s):  
Nazila Darabi ◽  
Abdalhossein Rezai ◽  
Seyedeh Shahrbanoo Falahieh Hamidpour

Breast cancer is a common cancer in female. Accurate and early detection of breast cancer can play a vital role in treatment. This paper presents and evaluates a thermogram based Computer-Aided Detection (CAD) system for the detection of breast cancer. In this CAD system, the Random Subset Feature Selection (RSFS) algorithm and hybrid of minimum Redundancy Maximum Relevance (mRMR) algorithm and Genetic Algorithm (GA) with RSFS algorithm are utilized for feature selection. In addition, the Support Vector Machine (SVM) and k-Nearest Neighbors (kNN) algorithms are utilized as classifier algorithm. The proposed CAD system is verified using MATLAB 2017 and a dataset that is composed of breast images from 78 patients. The implementation results demonstrate that using RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 85.36% and 75%, and sensitivity of 94.11% and 79.31%, respectively. In addition, using hybrid GA and RSFS algorithm for feature selection and kNN and SVM algorithms as classifier have accuracy of 83.87% and 69.56%, and sensitivity of 96% and 81.81%, respectively, and using hybrid mRMR and RSFS algorithms for feature selection and kNN and SVM algorithms as classifier have accuracy of 77.41% and 73.07%, and sensitivity of 98% and 72.72%, respectively.


2020 ◽  
Vol 9 (2) ◽  
pp. 25-44
Author(s):  
Usha N. ◽  
Sriraam N. ◽  
Kavya N. ◽  
Bharathi Hiremath ◽  
Anupama K Pujar ◽  
...  

Breast cancer is one among the most common cancers in women. The early detection of breast cancer reduces the risk of death. Mammograms are an efficient breast imaging technique for breast cancer screening. Computer aided diagnosis (CAD) systems reduce manual errors and helps radiologists to analyze the mammogram images. The mammogram images are typically in two views, cranial-caudal (CC) and medio lateral oblique (MLO) views. MLO contains pectoral muscles (chest muscles) at the upper right or left corner of the image. In this study, it was removed by using a semi-automated method. All the normal and abnormal images were filtered and enhanced to improve the quality. GLCM (Gray Level Co-occurrence Matrix) texture features were extracted and analyzed by changing the number of features in a feature set. Linear Support Vector Machine (LSVM) was used as classifier. The classification accuracy was improved as the number of features in GLCM feature set increases. Simulation results show an overall classification accuracy of 96.7% with 19 GLCM features using SVM classifiers.


Sign in / Sign up

Export Citation Format

Share Document