Brain-Computer Interface

2022 ◽  
pp. 161-172
Author(s):  
Anthony Triche ◽  
Md Abdullah Al Momin

Launched in 2017 to widespread publicity due to the involvement of tech magnate and outspoken futurist Elon Musk, Neuralink Corp. aims to develop an advanced brain-computer interface (BCI) platform capable of assisting in the treatment of serious neurological conditions with longer-term goals of approaching transhumanism through nonmedical human enhancement to enable human-machine “symbiosis with artificial intelligence.” The first published description of a complete prototype Neuralink system, detailed by Muskin the company's only white paper to date, describes a closed-loop, invasive BCI architecture with an unprecedented magnitude of addressable electrodes. Invasive BCI systems require surgical implantation to allow for directly targeted capture and/or stimulation of neural spiking activity in functionally associated clusters of neurons beneath the surface of the cortex.

Author(s):  
Martin Schüttler ◽  
Fabian Kohler ◽  
Christian Stolle ◽  
Jörg Fischer ◽  
Thomas Stieglitz ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. e0213516 ◽  
Author(s):  
Stefan K. Ehrlich ◽  
Kat R. Agres ◽  
Cuntai Guan ◽  
Gordon Cheng

2014 ◽  
Vol 61 (7) ◽  
pp. 2092-2101 ◽  
Author(s):  
Ren Xu ◽  
Ning Jiang ◽  
Natalie Mrachacz-Kersting ◽  
Chuang Lin ◽  
Guillermo Asin Prieto ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Neethu Robinson ◽  
Tushar Chouhan ◽  
Ernest Mihelj ◽  
Paulina Kratka ◽  
Frédéric Debraine ◽  
...  

Several studies in the recent past have demonstrated how Brain Computer Interface (BCI) technology can uncover the neural mechanisms underlying various tasks and translate them into control commands. While a multitude of studies have demonstrated the theoretic potential of BCI, a point of concern is that the studies are still confined to lab settings and mostly limited to healthy, able-bodied subjects. The CYBATHLON 2020 BCI race represents an opportunity to further develop BCI design strategies for use in real-time applications with a tetraplegic end user. In this study, as part of the preparation to participate in CYBATHLON 2020 BCI race, we investigate the design aspects of BCI in relation to the choice of its components, in particular, the type of calibration paradigm and its relevance for long-term use. The end goal was to develop a user-friendly and engaging interface suited for long-term use, especially for a spinal-cord injured (SCI) patient. We compared the efficacy of conventional open-loop calibration paradigms with real-time closed-loop paradigms, using pre-trained BCI decoders. Various indicators of performance were analyzed for this study, including the resulting classification performance, game completion time, brain activation maps, and also subjective feedback from the pilot. Our results show that the closed-loop calibration paradigms with real-time feedback is more engaging for the pilot. They also show an indication of achieving better online median classification performance as compared to conventional calibration paradigms (p = 0.0008). We also observe that stronger and more localized brain activation patterns are elicited in the closed-loop paradigm in which the experiment interface closely resembled the end application. Thus, based on this longitudinal evaluation of single-subject data, we demonstrate that BCI-based calibration paradigms with active user-engagement, such as with real-time feedback, could help in achieving better user acceptability and performance.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yanyan Dong ◽  
Jie Hou ◽  
Ning Zhang ◽  
Maocong Zhang

Artificial intelligence (AI) is essentially the simulation of human intelligence. Today’s AI can only simulate, replace, extend, or expand part of human intelligence. In the future, the research and development of cutting-edge technologies such as brain-computer interface (BCI) together with the development of the human brain will eventually usher in a strong AI era, when AI can simulate and replace human’s imagination, emotion, intuition, potential, tacit knowledge, and other kinds of personalized intelligence. Breakthroughs in algorithms represented by cognitive computing promote the continuous penetration of AI into fields such as education, commerce, and medical treatment to build up AI service space. As to human concern, namely, who controls whom between humankind and intelligent machines, the answer is that AI can only become a service provider for human beings, demonstrating the value rationality of following ethics.


Sign in / Sign up

Export Citation Format

Share Document