Bi-Level Programming for Earning Management in Imprecise and Random Environments

Author(s):  
Vishnu Pratap Singh

Organizations striving in today's environment of active technological and business transformations are confronted with the difficulties of “twofoldness,” that is, performing efficiently in the present while innovating effectively for the future. Administrators inside these organizations not only have to concentrate on the business benefit and profitability of each of their authorized commodities and services but must also guarantee their ability to introduce into next-generation contributions that output properties that will maintain and even enhance their renewed global competitiveness. The surprisingly fast breakdown of so many probably great companies over the last decade gives an extensive declaration to the consequence of accomplishing this dualism. In this chapter, to deal with this dualism, the authors consider a fuzzy stochastic bi-level programming problem in the mathematical models. The fuzziness and randomness concept has been taken care of by the fuzzy random variable as the parameter of the bi-level programming problem. A two-stage approach has been defined to solve the problem.

2018 ◽  
Vol 47 (2) ◽  
pp. 53-67 ◽  
Author(s):  
Jalal Chachi

In this paper, rst a new notion of fuzzy random variables is introduced. Then, usingclassical techniques in Probability Theory, some aspects and results associated to a randomvariable (including expectation, variance, covariance, correlation coecient, etc.) will beextended to this new environment. Furthermore, within this framework, we can use thetools of general Probability Theory to dene fuzzy cumulative distribution function of afuzzy random variable.


2012 ◽  
Vol 588-589 ◽  
pp. 458-462
Author(s):  
Zhi Jian Yuan ◽  
Yan Li

The impact of voltage sags on equipment is usually described by equipment failure probability.It is generally difficult to assess and predict the probability because of the uncertainty of both the nature of voltage sags and the VTL (VTL) of equipment. By defining the equipment failure event caused by voltage sags as a fuzzy-random event, a fuzzy-random assessment model incorporating those uncertainty is developed. The model is able to convert the probability problem of a fuzzy-random variable to that of a common random variable by using λ-cut set. It is thus valuable in theoretical analysis and engineering application. The validity of the developed model is verified by Monte Carlo stochastic simulation using personal computers (PCs)as test equipment.


Author(s):  
Maria Brigida Ferraro

A linear regression model for imprecise random variables is considered. The imprecision of a random element has been formalized by means of the LR fuzzy random variable, characterized by a center, a left and a right spread. In order to avoid the non-negativity conditions the spreads are transformed by means of two invertible functions. To analyze the generalization performance of that model an appropriate prediction error is introduced, and it is estimated by means of a bootstrap procedure. Furthermore, since the choice of response transformations could affect the inferential procedures, a computational proposal is introduced for choosing from a family of parametric link functions, the Box-Cox family, the transformation parameters that minimize the prediction error of the model.


Author(s):  
YUGE DONG ◽  
AINAN WANG

When fuzzy information is taken into consideration in design, it is difficult to analyze the reliability of machine parts because we usually must deal with random information and fuzzy information simultaneously. Therefore, in order to make it easy to analyze fuzzy reliability, this paper proposes the transformation between discrete fuzzy random variable and discrete random variable based on a fuzzy reliability analysis when one of the stress and strength is a discrete fuzzy variable and the other is a discrete random variable. The transformation idea put forwards in this paper can be extended to continuous case, and can also be used in the fuzzy reliability analysis of repairable system.


Sign in / Sign up

Export Citation Format

Share Document