Answer Selection in Community Question Answering Using LSTM

2021 ◽  
pp. 153-165
Author(s):  
Saman Qureshi ◽  
Sri Khetwat Saritha ◽  
D. Kishan

Websites like Quora, Yahoo! Answers, and Reddit are examples of community question answering (CQA) systems that enable users to ask questions as well as to answer questions. Answer selection is the most challenging task in CQA systems to get the good and relevant answer for the user questions. The shortcomings in the current approaches are lexical gap between text pairs, dependency on external sources, and manual features which lead to lack of generalization ability. These shortcomings are resolved by already proposed work, but they lack generalization, and their performance is not satisfying. Whereas to focus on rich quality answers, attention mechanism can be integrates with neural network. This chapter proposes two models BLSTM and BLSTM with attention mechanism. Attention mechanism aligns question to the answer with the answer's more informative part. So, when it is applied in the model, BLSTM with attention mechanism model surpasses the top approaches.

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 393
Author(s):  
Peng Wang ◽  
Jiang Liu ◽  
Lijia Xu ◽  
Peng Huang ◽  
Xiong Luo ◽  
...  

The accurate classification of Amanita is helpful to its research on biological control and medical value, and it can also prevent mushroom poisoning incidents. In this paper, we constructed the Bilinear convolutional neural networks (B-CNN) with attention mechanism model based on transfer learning to realize the classification of Amanita. When the model is trained, the weight on ImageNet is used for pre-training, and the Adam optimizer is used to update network parameters. In the test process, images of Amanita at different growth stages were used to further test the generalization ability of the model. After comparing our model with other models, the results show that our model greatly reduces the number of parameters while achieving high accuracy (95.2%) and has good generalization ability. It is an efficient classification model, which provides a new option for mushroom classification in areas with limited computing resources.


2022 ◽  
Vol 40 (1) ◽  
pp. 1-33
Author(s):  
Yang Deng ◽  
Yuexiang Xie ◽  
Yaliang Li ◽  
Min Yang ◽  
Wai Lam ◽  
...  

Answer selection, which is involved in many natural language processing applications, such as dialog systems and question answering (QA), is an important yet challenging task in practice, since conventional methods typically suffer from the issues of ignoring diverse real-world background knowledge. In this article, we extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG). First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network, which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information. Then, we develop two kinds of knowledge-aware attention mechanism to summarize both the context-based and knowledge-based interactions between questions and answers. To handle the diversity and complexity of KG information, we further propose a Contextualized Knowledge-aware Attentive Neural Network, which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network and comprehensively learns context-based and knowledge-based sentence representation via the multi-view knowledge-aware attention mechanism. We evaluate our method on four widely used benchmark QA datasets, including WikiQA, TREC QA, InsuranceQA, and Yahoo QA. Results verify the benefits of incorporating external knowledge from KG and show the robust superiority and extensive applicability of our method.


Sign in / Sign up

Export Citation Format

Share Document