Real-Time Analysis of Human Body Parts and Gesture-Activity Recognition in 3D

Author(s):  
Burak Ozer ◽  
Tiehan Lv ◽  
Wayne Wolf

Due to advancement in technology, availability of resources and by increased utilization of on node sensors enormous amount of data is obtained. There is a necessity of analyzing and classifying this physiological information by efficient and effective approaches such as deep learning and artificial intelligence. Human Activity Recognition (HAR) is assuming a dominant role in sports, security, anti-crime, healthcare and also in environmental applications like wildlife observation etc. Most techniques work well for processing offline instead of real- time processing. There are few approaches which provide maximum accuracy for real time processing of large-scale data, one of the compromising approaches is deep learning. Limitation of resources is one of the causes to restrict the usage of deep learning for low power devices which can be worn on our body. Deep learning implementations are known to produce precise results for different computing systems.We suggest a deep learning approach in this paper which integrates features and data learned from inertial sensors with complementary knowledge obtained from a collection of shallow features which generates the possibility of performing real time activity classification accurately. Eliminating the obstructions caused by using deep learning methods for real-time analysis is the aim of this integrated design. Before passing the data into the deep learning framework, we perform spectral analysis to optimize the planned methodology for on-node computation. The accuracy obtained by combined approach is tested by utilizing datasets obtained from laboratory and real world controlled and uncontrolled environment. Our outcomes demonstrate the legitimacy of the methodology on various human action datasets, beating different techniques, including the two strategies utilized inside our consolidated pipeline. We additionally exhibit that our integrated design's classification times are reliable with on node real-time analysis criteria on smart phones and wearable technology.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2020 ◽  
Vol 67 (4) ◽  
pp. 1197-1205 ◽  
Author(s):  
Yuki Totani ◽  
Susumu Kotani ◽  
Kei Odai ◽  
Etsuro Ito ◽  
Manabu Sakakibara

2021 ◽  
Vol 2021 (4) ◽  
pp. 7-16
Author(s):  
Sivaraman Eswaran ◽  
Aruna Srinivasan ◽  
Prasad Honnavalli

2021 ◽  
Vol 57 (28) ◽  
pp. 3430-3444
Author(s):  
Vinod Kumar

This article describes our journey and success stories in the development of chemical warfare detection, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents in realistic environments.


2021 ◽  
Vol 77 (2) ◽  
pp. 98-108
Author(s):  
R. M. Churchill ◽  
C. S. Chang ◽  
J. Choi ◽  
J. Wong ◽  
S. Klasky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document