Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation

2021 ◽  
Vol 57 (28) ◽  
pp. 3430-3444
Author(s):  
Vinod Kumar

This article describes our journey and success stories in the development of chemical warfare detection, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents in realistic environments.

2020 ◽  
Vol 24 (20) ◽  
pp. 2378-2382
Author(s):  
Andrea Pappalardo ◽  
Chiara M.A. Gangemi ◽  
Rosa Maria Toscano ◽  
Giuseppe Trusso Sfrazzetto

Real-time sensing of Chemical Warfare Agents (CWAs) is today a crucial topic to prevent the lethal effects of a terroristic chemical attack. For this reason, the development of efficient, selective, sensitive and reversible sensoristic devices, able to detect by optical response ppm levels of these compounds, is strongly required. Here, the synthesis of a new fluorescent sensor based on a salen-uranyl scaffold, functionalized with two bodipy moieties, and its application for the detection of sub-ppm levels of CWAs is reported. Detection properties were evaluated by fluorescence measurements and selectivity tests demonstrated the strong affinity for CWAs.


2009 ◽  
Vol 81 (16) ◽  
pp. 6744-6749 ◽  
Author(s):  
J. Michael Nilles ◽  
Theresa R. Connell ◽  
H. Dupont Durst

2021 ◽  
Vol 136 (5) ◽  
Author(s):  
Dieter Rothbacher

AbstractNATO doctrine considers clearance decontamination to be applicable after the termination of a CBRN incident and largely deems the conduct of clearance decontamination to be a civilian, not a military, capability (NATO Standard NATO STANREC 4784 CBRN Clearance Decontamination, Study Draft 1, November 2015). Clearance decontamination procedures are such that the process is verified as being achieved by determining the residual contamination levels on every part of various surfaces of equipment and infrastructure, and by demonstrating that such levels are below the ones that are pre-determined by the relevant civilian authorities, who are responsible for the safety of the civilian population (NATO Standard NATO STANREC 4784 CBRN Clearance Decontamination, Study Draft 1, November 2015). The current desirable surface contamination detection levels for some Chemical Warfare Agents are technically challenging and may be beyond the capabilities of current technologies of military and civilian authorities. Can those low levels be detected, in real time, with existing technologies? Proton Transfer Reaction–Time of Flight–Mass Spectrometry (PTR–ToF–MS) enables simultaneous real-time detection, monitoring, and quantification of volatile organic compounds. Trials and evaluations with this PTR–ToF–MS technology, using Chemical Warfare Agents as contaminants, will show that this technology is an invaluable asset in supporting civilian authorities when determining safe levels of surface contamination in real time, after the completion of decontamination operations.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5731
Author(s):  
Nunzio Tuccitto ◽  
Luca Spitaleri ◽  
Giovanni Li Destri ◽  
Andrea Pappalardo ◽  
Antonino Gulino ◽  
...  

Real-time sensing of chemical warfare agents by optical sensors is today a crucial target to prevent terroristic attacks by chemical weapons. Here the synthesis, characterization and detection properties of a new sensor, based on covalently functionalized carbon nanoparticles, are reported. This nanosensor exploits noncovalent interactions, in particular hydrogen bonds, to detect DMMP, a simulant of nerve agents. The nanostructure of the sensor combined with the supramolecular sensing approach leads to high binding constant affinity, high selectivity and the possibility to reuse the sensor.


2020 ◽  
Vol 20 (11) ◽  
pp. 7151-7157
Author(s):  
Jinuk Kim ◽  
Eunhyun Kim ◽  
Jihyun Kim ◽  
Joo-Hyung Kim ◽  
Seonggyun Ha ◽  
...  

Recently, efforts have been made to adapt surface acoustic waves (SAWs) for use in chemical sensors for detection of chemical warfare agents (CWAs). In this study, a four-channel real-time CWA detection system was constructed using four 250-MHz SAW sensors. Each system consists of three different chemical sensors and one reference sensor. The reference sensor compensates for frequency variations according to humidity and temperature conditions. Signals from the SAW sensors can be checked on a PC-based graphical user interface without additional measuring equipment. To measure dimethyl methylphosphonate (DMMP), a simulant of sarin gas, polyhedral oligomeric silsesquioxane (POSS) and thiourea (TU)-based synthetic polymers were used as sensing materials. The reference sensor was not coated, whereas the three different chemical sensors were coated with POSS, TU-1, and TU-2. The maximum frequencies of POSS, TU-1, and TU-2 were shifted 15.86, 13.85, and 0.944 kHz, showing significant values. We also found a relatively good linear relation between the frequency shift and the concentration of DMMP. The three sensing materials selected-POSS, TU-1, and TU-2-responded significantly to DMMP and triethylphosphate in the selectivity tests. This response is due to the chemical bonding of the sensing materials with the phosphonate in the nerve-agent simulants. These results indicate that the four-channel SAW monitoring system described in this paper shows potential as a portable real-time monitoring system to detect a variety of toxic vapors simultaneously, without using complex measuring equipment. In addition, this approach has demonstrated potential for developing excellent portable sensors to detect different types of CWAs.


2020 ◽  
Vol 24 (20) ◽  
pp. 2378-2382
Author(s):  
Andrea Pappalardo ◽  
Chiara M.A. Gangemi ◽  
Rosa Maria Toscano ◽  
Giuseppe Trusso Sfrazzetto

Real-time sensing of Chemical Warfare Agents (CWAs) is today a crucial topic to prevent the lethal effects of a terroristic chemical attack. For this reason, the development of efficient, selective, sensitive and reversible sensoristic devices, able to detect by optical response ppm levels of these compounds, is strongly required. Here, the synthesis of a new fluorescent sensor based on a salen-uranyl scaffold, functionalized with two bodipy moieties, and its application for the detection of sub-ppm levels of CWAs is reported. Detection properties were evaluated by fluorescence measurements and selectivity tests demonstrated the strong affinity for CWAs.


2018 ◽  
Vol 267 ◽  
pp. 457-466 ◽  
Author(s):  
Marta Lafuente ◽  
Ismael Pellejero ◽  
Víctor Sebastián ◽  
Miguel A. Urbiztondo ◽  
Reyes Mallada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document