Performance Evaluation of Feed-Forward Neural Network Models for Handwritten Hindi Characters with Different Feature Extraction Methods
Automatic handwritten character recognition is one of the most critical and interesting research areas in domain of pattern recognition. The problem becomes more challenging if domain is handwritten Hindi character as Hindi characters are cursive in nature and demonstrate a lot of similar features. A number of feature extraction, classification and recognition techniques have been devised and being used in this area; still the efficiency and accuracy is awaited. In this article, performance of various feed-forward neural networks is evaluated for the generalized classification of handwritten Hindi characters using various feature extraction methods. To study and analyze the performance of the selected neural networks, training and test character patterns are presented to each model and their recognition accuracy is measured. It has been analyzed that the Radial basis function network and Exact Radial basis network give highest recognition accuracy while Elman backpropagation neural network gives lowest recognition rate for most of the selected feature extraction methods.