Performance Evaluation of Feed-Forward Neural Network Models for Handwritten Hindi Characters with Different Feature Extraction Methods

2017 ◽  
Vol 7 (2) ◽  
pp. 38-57
Author(s):  
Gunjan Singh ◽  
Sandeep Kumar ◽  
Manu Pratap Singh

Automatic handwritten character recognition is one of the most critical and interesting research areas in domain of pattern recognition. The problem becomes more challenging if domain is handwritten Hindi character as Hindi characters are cursive in nature and demonstrate a lot of similar features. A number of feature extraction, classification and recognition techniques have been devised and being used in this area; still the efficiency and accuracy is awaited. In this article, performance of various feed-forward neural networks is evaluated for the generalized classification of handwritten Hindi characters using various feature extraction methods. To study and analyze the performance of the selected neural networks, training and test character patterns are presented to each model and their recognition accuracy is measured. It has been analyzed that the Radial basis function network and Exact Radial basis network give highest recognition accuracy while Elman backpropagation neural network gives lowest recognition rate for most of the selected feature extraction methods.

Author(s):  
Tshilidzi Marwala

In this chapter, a classifier technique that is based on a missing data estimation framework that uses autoassociative multi-layer perceptron neural networks and genetic algorithms is proposed. The proposed method is tested on a set of demographic properties of individuals obtained from the South African antenatal survey and compared to conventional feed-forward neural networks. The missing data approach based on the autoassociative network model proposed gives an accuracy of 92%, when compared to the accuracy of 84% obtained from the conventional feed-forward neural network models. The area under the receiver operating characteristics curve for the proposed autoassociative network model is 0.86 compared to 0.80 for the conventional feed-forward neural network model. The autoassociative network model proposed in this chapter, therefore, outperforms the conventional feed-forward neural network models and is an improved classifier. The reasons for this are: (1) the propagation of errors in the autoassociative network model is more distributed while for a conventional feed-forward network is more concentrated; and (2) there is no causality between the demographic properties and the HIV and, therefore, the HIV status does change the demographic properties and vice versa. Therefore, it is better to treat the problem as a missing data problem rather than a feed-forward problem.


2019 ◽  
Vol 14 (2) ◽  
pp. 158-164 ◽  
Author(s):  
G. Emayavaramban ◽  
A. Amudha ◽  
T. Rajendran ◽  
M. Sivaramkumar ◽  
K. Balachandar ◽  
...  

Background: Identifying user suitability plays a vital role in various modalities like neuromuscular system research, rehabilitation engineering and movement biomechanics. This paper analysis the user suitability based on neural networks (NN), subjects, age groups and gender for surface electromyogram (sEMG) pattern recognition system to control the myoelectric hand. Six parametric feature extraction algorithms are used to extract the features from sEMG signals such as AR (Autoregressive) Burg, AR Yule Walker, AR Covariance, AR Modified Covariance, Levinson Durbin Recursion and Linear Prediction Coefficient. The sEMG signals are modeled using Cascade Forward Back propagation Neural Network (CFBNN) and Pattern Recognition Neural Network. Methods: sEMG signals generated from forearm muscles of the participants are collected through an sEMG acquisition system. Based on the sEMG signals, the type of movement attempted by the user is identified in the sEMG recognition module using signal processing, feature extraction and machine learning techniques. The information about the identified movement is passed to microcontroller wherein a control is developed to command the prosthetic hand to emulate the identified movement. Results: From the six feature extraction algorithms and two neural network models used in the study, the maximum classification accuracy of 95.13% was obtained using AR Burg with Pattern Recognition Neural Network. This justifies that the Pattern Recognition Neural Network is best suited for this study as the neural network model is specially designed for pattern matching problem. Moreover, it has simple architecture and low computational complexity. AR Burg is found to be the best feature extraction technique in this study due to its high resolution for short data records and its ability to always produce a stable model. In all the neural network models, the maximum classification accuracy is obtained for subject 10 as a result of his better muscle fitness and his maximum involvement in training sessions. Subjects in the age group of 26-30 years are best suited for the study due to their better muscle contractions. Better muscle fatigue resistance has contributed for better performance of female subjects as compared to male subjects. From the single trial analysis, it can be observed that the hand close movement has achieved best recognition rate for all neural network models. Conclusion: In this paper a study was conducted to identify user suitability for designing hand prosthesis. Data were collected from ten subjects for twelve tasks related to finger movements. The suitability of the user was identified using two neural networks with six parametric features. From the result, it was concluded thatfit women doing regular physical exercises aged between 26-30 years are best suitable for developing HMI for designing a prosthetic hand. Pattern Recognition Neural Network with AR Burg extraction features using extension movements will be a better way to design the HMI. However, Signal acquisition based on wireless method is worth considering for the future.


2004 ◽  
Vol 04 (02) ◽  
pp. 143-152 ◽  
Author(s):  
N. SRIRAAM ◽  
C. ESWARAN

This paper describes a two-stage lossless compression scheme for electroencephalographic (EEG) signals using radial basis neural network predictors. Two variants of the radial basis network, namely, the radial basis function network and the generalized regression neural network are used in the first stage and their performances are evaluated in terms of compression ratio. The training is imparted to the network by using two training schemes, namely, single block scheme and block adaptive scheme. The compression ratios achieved by these networks when used along with arithmetic encoders in a two-stage compression scheme are obtained for different EEG test files. It is found that the generalized regression neural network performs better than other neural network models such as multilayer perceptrons and Elman network and linear predictor such as FIR.


Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 36
Author(s):  
Tessfu Geteye Fantaye ◽  
Junqing Yu ◽  
Tulu Tilahun Hailu

Deep neural networks (DNNs) have shown a great achievement in acoustic modeling for speech recognition task. Of these networks, convolutional neural network (CNN) is an effective network for representing the local properties of the speech formants. However, CNN is not suitable for modeling the long-term context dependencies between speech signal frames. Recently, the recurrent neural networks (RNNs) have shown great abilities for modeling long-term context dependencies. However, the performance of RNNs is not good for low-resource speech recognition tasks, and is even worse than the conventional feed-forward neural networks. Moreover, these networks often overfit severely on the training corpus in the low-resource speech recognition tasks. This paper presents the results of our contributions to combine CNN and conventional RNN with gate, highway, and residual networks to reduce the above problems. The optimal neural network structures and training strategies for the proposed neural network models are explored. Experiments were conducted on the Amharic and Chaha datasets, as well as on the limited language packages (10-h) of the benchmark datasets released under the Intelligence Advanced Research Projects Activity (IARPA) Babel Program. The proposed neural network models achieve 0.1–42.79% relative performance improvements over their corresponding feed-forward DNN, CNN, bidirectional RNN (BRNN), or bidirectional gated recurrent unit (BGRU) baselines across six language collections. These approaches are promising candidates for developing better performance acoustic models for low-resource speech recognition tasks.


Author(s):  
Kailash D. Kharat ◽  
Pradyumna P. Kulkarni

MRI (Magnetic resonance Imaging) brain tumor images Classification is a difficult task due to the variance and complexity of tumors. This paper presents two Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of three stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the features related with MRI images using discrete wavelet transformation (DWT). In the second stage, the features of magnetic resonance images (MRI) have been reduced using principles component analysis (PCA) to the more essential features. In the classification stage, two classifiers based on supervised machine learning have been developed. The first classifier based on feed forward artificial neural network (FF-ANN) and the second classifier based on Back-Propagation Neural Network. The classifiers have been used to classify subjects as normal or abnormal MRI brain images. Artificial Neural Networks (ANNs) have been developed for a wide range of applications such as function approximation, feature extraction, optimization, and classification. In particular, they have been developed for image enhancement, segmentation, registration, feature extraction, and object recognition and classification. Among these, object recognition and image classification is more important as it is a critical step for high-level processing such as brain tumor classification. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), Hopfield, Cellular, and Pulse-Coupled neural networks have been used for image segmentation. These networks can be categorized into feed-forward (associative) and feedback (auto-associative) networks..


2016 ◽  
Vol 67 (1) ◽  
pp. 117-134 ◽  
Author(s):  
Pavol Marák ◽  
Alexander Hambalík

Abstract Performance of modern automated fingerprint recognition systems is heavily influenced by accuracy of their feature extraction algorithm. Nowadays, there are more approaches to fingerprint feature extraction with acceptable results. Problems start to arise in low quality conditions where majority of the traditional methods based on analyzing texture of fingerprint cannot tackle this problem so effectively as artificial neural networks. Many papers have demonstrated uses of neural networks in fingerprint recognition, but there is a little work on using them as Level-2 feature extractors. Our goal was to contribute to this field and develop a novel algorithm employing neural networks as extractors of discriminative Level-2 features commonly used to match fingerprints. In this work, we investigated possibilities of incorporating artificial neural networks into fingerprint recognition process, implemented and documented our own software solution for fingerprint identification based on neural networks whose impact on feature extraction accuracy and overall recognition rate was evaluated. The result of this research is a fully functional software system for fingerprint recognition that consists of fingerprint sensing module using high resolution sensor, image enhancement module responsible for image quality restoration, Level-1 and Level-2 feature extraction module based on neural network, and finally fingerprint matching module using the industry standard BOZORTH3 matching algorithm. For purposes of evaluation we used more fingerprint databases with varying image quality, and the performance of our system was evaluated using FMR/FNMR and ROC indicators. From the obtained results, we may draw conclusions about a very positive impact of neural networks on overall recognition rate, specifically in low quality.


Author(s):  
Mrudula Nimbarte ◽  
Kishor Bhoyar

<span>In the recent years, face recognition across aging has become very popular and challenging task in the area of face recognition.  Many researchers have contributed in this area, but still there is a significant gap to fill in. Selection of feature extraction and classification algorithms plays an important role in this area. Deep Learning with Convolutional Neural Networks provides us a combination of feature extraction and classification in a single structure. In this paper, we have presented a novel idea of 7-Layer CNN architecture for solving the problem of aging for recognizing facial images across aging. We have done extensive experimentations to test the performance of the proposed system using two standard datasets FGNET and MORPH</span><span>(Album II). Rank-1 recognition accuracy of our proposed system is 76.6% on FGNET and 92.5% on MORPH</span><span>(Album II). Experimental results show the significant improvement over available state-of- the-arts with the proposed CNN architecture and the classifier.</span>


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 999
Author(s):  
Aihua Yu ◽  
Ming Tang ◽  
Gang Li ◽  
Beiping Hou ◽  
Zhongwei Xuan ◽  
...  

Though the traditional convolutional neural network has a high recognition rate in cloud classification, it has poor robustness in cloud classification with occlusion. In this paper, we propose a novel scheme for cloud classification, in which the convolutional neural networks are used for feature extraction and a weighted sparse representation coding is adopted for classification. Three such algorithms are proposed. Experiments are carried out using the multimodal ground-based cloud dataset and the results show that in the case of occlusion, the accuracy of the proposed methods can be much improved over the traditional convolutional neural network-based algorithms.


2013 ◽  
Vol 325-326 ◽  
pp. 1746-1749 ◽  
Author(s):  
Shuo Ding ◽  
Xiao Heng Chang

BP neural network is a kind of widely used feed-forward network. However its innate shortcomings are gradually giving rise to the study of other networks. Currently one of the research focuses in the area of feed-forward networks is radial basis function neural network. To test the radial basis function neural network for nonlinear function approximation capability, this paper first introduces the theories of RBF networks, as well as the structure, function approximation and learning algorithm of radial basis function neural network. Then a simulation test is carried out to compare BPNN and RBFNN. The simulation results indicate that RBFNN is simpler in structure, faster in speed and better in approximation performance. That is to say RBFNN is superior to BPNN in many aspects. But when solving the same problem, the structure of radial basis networks is more complicated than that of BP neural networks. Keywords: Radial basis function; Neural network; Function approximation; Simulation; MATLAB


Sign in / Sign up

Export Citation Format

Share Document