scholarly journals Sensitivity Analysis of GFRP Composite Drilling Parameters and Genetic Algorithm-Based Optimisation

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

In this article, a genetic algorithm (GA) is used for optimizing a metamodel of surface roughness (R_a ) in drilling glass-fibre reinforced plastic (GFRP) composites. A response surface methodology (RSM) based three levels (-1, 0, 1) design of experiments is used for developing the metamodel. Analysis of variance (ANOVA) is undertaken to determine the importance of each process parameter in the developed metamodel. Subsequently, after detailed metamodel adequacy checks, the insignificant terms are dropped to make the established metamodel more rigorous and make accurate predictions. A sensitivity analysis of the independent variables on the output response helps in determining the most influential parameters. It is observed that f is the most crucial parameter, followed by the t and D. The optimization results depict that the R_a increases as the f increases and a minor value of drill diameter is the most appropriate to attain minimum surface roughness. Finally, a robustness test of the predicted GA solution is carried out.

2018 ◽  
Vol 10 (11) ◽  
pp. 168781401880734
Author(s):  
Jian He ◽  
Dongyuan Xie ◽  
Qichao Xue ◽  
Yangyang Zhan

The diffusion influence of seawater on the static and interlayer cracking properties of a polyvinyl chloride foam sandwich structure is investigated in this study. After soaking specimens in seawater for various durations, various comparison tests are performed to investigate the effects of seawater. Compression tests for H60 and H200 polyvinyl chloride foam specimens are conducted to study strength and modulus degradation, and the results show that immerging time and temperature have significant effects on polyvinyl chloride foam properties. Tensile tests for glass-fibre-reinforced plastic panels, four-point bending tests and double cantilever bending tests for polyvinyl chloride foam sandwich specimens are also performed. The results show that seawater immerging treatment has a noticeable influence on glass-fibre-reinforced plastic tensile properties and interlayer critical energy release rate values, but has almost no effect on bending properties of foam sandwich specimen. Furthermore, a rate-dependent phenomenon is observed in double cantilever bending tests, in which higher loading rate will lead to larger critical energy release values. Numerical simulation is also performed to illustrate the cracking process of double cantilever bending tests and shows a certain accuracy. The simulation also demonstrates that the viscoelasticity of foam material after immerging treatment results in the rate-dependent characterization of double cantilever bending tests.


Sign in / Sign up

Export Citation Format

Share Document