drill diameter
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 24)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

In this article, a genetic algorithm (GA) is used for optimizing a metamodel of surface roughness (R_a ) in drilling glass-fibre reinforced plastic (GFRP) composites. A response surface methodology (RSM) based three levels (-1, 0, 1) design of experiments is used for developing the metamodel. Analysis of variance (ANOVA) is undertaken to determine the importance of each process parameter in the developed metamodel. Subsequently, after detailed metamodel adequacy checks, the insignificant terms are dropped to make the established metamodel more rigorous and make accurate predictions. A sensitivity analysis of the independent variables on the output response helps in determining the most influential parameters. It is observed that f is the most crucial parameter, followed by the t and D. The optimization results depict that the R_a increases as the f increases and a minor value of drill diameter is the most appropriate to attain minimum surface roughness. Finally, a robustness test of the predicted GA solution is carried out.


2022 ◽  
Vol 9 (1) ◽  
pp. 119-134
Author(s):  
Nurhusien Hassen Mohammed ◽  
◽  
Desalegn Wogaso Wolla

<abstract> <p>Machining natural fiber reinforced polymer composite materials is one of most challenging tasks due to the material's anisotropic property, non-homogeneous structure and abrasive nature of fibers. Commonly, conventional machining of composites leads to delamination, inter-laminar cracks, fiber pull out, poor surface finish and wear of cutting tool. However, these challenges can be significantly reduced by using proper machining conditions. Thus, this research aims at optimizing machining parameters in drilling hybrid sisal-cotton fibers reinforced polyester composite for better machining performance characteristics namely better hole roundness accuracy and surface finish using Taguchi method. The effect of machining parameters including spindle speed, feed rate and drill diameter on drill hole accuracy (roundness error) and surface-roughness of the hybrid composite are evaluated. Series of experiments based on Taguchi's L<sub>16</sub> orthogonal array were performed using different ranges of machining parameters namely spindle speed (600,900, 1200, 1600 rpm), feed rate (10, 15, 20, 25 mm/min) and drill diameter (6, 7, 8, 10 mm). Hole roundness error and surface-roughness are determined using ABC digital caliper and Zeta 20 profilometer, respectively. Optimum machining condition for drilling hybrid composite material (speed: 1600 rpm, feed rate: 25 mm/min and drill diameter: 6 mm) is determined, and the results are verified by conducting confirmation test which proves that the results are reliable.</p> </abstract>


2021 ◽  
Author(s):  
Pankaj . ◽  
Suman Kant ◽  
C.S. Jawalkar

Abstract This paper discusses on fabrication, testing and evaluation of delamination factor of nettle fiber based composites for low duty applications. The randomly oriented nettle fibers were used to fabricate the biocomposite by conventional hand lap up technique. Epoxy and Nettle based composite plates were developed by varying fiber weight percentage from 5% to 25%. The flexural, tensile, impact, chemical resistance and water absorption rate of developed nettle fiber based biocomposite were examined for different fiber weight fractions in the randomly oriented patterns as a unique and innovative attempt. During the investigation, flexural strength and tensile strength were improved up to 20 wt% of fiber addition and then it was decreased. This resulted in a continuous rise in impact strength with an enhancement in fiber wt. %. The influence of fiber weight percentage on water absorption and chemical resistance of fabricated composite was examined in different environments. The result showed that the nettle fibers can be used as an essential reinforcing material to design and fabricate mechanical and structural members for low duty application. The chemical behavior of nettle based composite was studied by the FTIR spectroscopy method and the presence of chemical functional group was confirmed. The drilling behavior of developed nettle/SiC/epoxy hybrid composites was evaluated by consider cutting process parameters like feed rate (0.125, 0.212 and 0.3 mm/rev), spindle speed (400, 600, 800 rev/min) and drill diameter (4, 6, 8 mm). Analysis of variance was used in designing experiments for the current investigation. Feed rate was found to be a very impressive factor in influencing the delamination factor.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gadhamsetty Guru Mahesh ◽  
Jayakrishna Kandasamy

Purpose Drilling holes in composite materials is a complex and challenging process because of their intrinsic anisotropic characteristics and unevenness compared to conventional metals. Hybridization of composites enhances the strength and hardness of the material but makes it more difficult to drill a hole in it. The purpose of this study is to optimize the drilling to minimize the delamination and taperness of hybrid glass fiber reinforced plastic (GFRP)/Al2O3 composites. Design/methodology/approach The present study investigates the impact of drilling parameters on delamination of the drilled hole and the taperness of the hole on hybrid GFRP/Al2O3. Optimum drilling conditions for minimizing delamination and taperness of the hole are determined to enhance the hole quality. Feed (f), speed (N) and drill diameter (D) are the parameters taken into consideration for drilling operation. By applying Taguchi’s signal-to-noise ratio analysis, process parameters have been optimized to reduce the delamination and taperness of holes on Hybrid GFRP/Al2O3 composites. The effect of process parameters was analyzed using the analysis of variance method. Findings The investigational results confirmed that the delamination is positively affected by speed, drill diameter and feed rate. Also, the taperness of the hole is positively affected by the drill diameter. Regression-based models were developed to predict the delamination and taperness of the hole matched with the experimental results, which are attained with an order of 95% and 97%. Originality/value Minimum delamination was found at the optimum condition of drill diameter 10 mm, feed at 0.225 mm/rev and the speed at 151 rpm and minimum taperness were found at the optimum condition of drill diameter 10 mm, feed at level 0.3 mm/rev and speed at 86 rpm for hybrid laminate composite (S-glass+ GFRP/Al2O3) were evaluated.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2645
Author(s):  
Omer Cohen ◽  
Dieter D. Bosshardt ◽  
Evegeny Weinberg ◽  
Gil Slutzkey ◽  
Ofer Moses

Stress concentrated at an implant’s neck may affect bone-to-implant contact (BIC). The objective of this study was to evaluate four different implant neck designs using two different drilling protocols on the BIC. Methods: Ninety-six implants were inserted in 12 minipigs calvarium. Implants neck designs evaluated were: type 1–6 coronal flutes (CFs), 8 shallow microthreads (SMs); type 2–6 CFs,4 deep microthreads (DMs); type 3–4 DMs; type 4–2 CFs, 8 SMs. Two groups of forty-eight implants were inserted with a final drill diameter of 2.8 mm (DP1) or 3.2 mm (DP2). Animals were sacrificed after 1 and 3 months, total-BIC (t-BIC) and coronal-BIC (c-BIC) were evaluated by nondecalcified histomorphometry analysis. Results: At 1 month, t-BIC ranged from 85–91% without significant differences between implant types or drilling protocol. Flutes on the coronal aspect impaired the BIC at 3 m. c-BIC of implant types with 6 CFs was similar and significantly lower than that of implant types 3 and 4. c-BIC of implant type 4 with SMs was highest of all implant types after both healing periods. Conclusions: BIC was not affected by the drilling protocol. CFs significantly impaired the -BIC. Multiple SMs were associated with greater c-BIC.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1699
Author(s):  
Chander Prakash ◽  
Alokesh Pramanik ◽  
Animesh K. Basak ◽  
Yu Dong ◽  
Sujan Debnath ◽  
...  

In the present research work, an effort has been made to explore the potential of using the adhesive tapes while drilling CFRPs. The input parameters, such as drill bit diameter, point angle, Scotch tape layers, spindle speed, and feed rate have been studied in response to thrust force, torque, circularity, diameter error, surface roughness, and delamination occurring during drilling. It has been found that the increase in point angle increased the delamination, while increase in Scotch tape layers reduced delamination. The surface roughness decreased with the increase in drill diameter and point angle, while it increased with the speed, feed rate, and tape layer. The best low roughness was obtained at 6 mm diameter, 130° point angle, 0.11 mm/rev feed rate, and 2250 rpm speed at three layers of Scotch tape. The circularity error initially increased with drill bit diameter and point angle, but then decreased sharply with further increase in the drill bit diameter. Further, the circularity error has non-linear behavior with the speed, feed rate, and tape layer. Low circularity error has been obtained at 4 mm diameter, 118° point angle, 0.1 mm/rev feed rate, and 2500 RPM speed at three layers of Scotch tape. The low diameter error has been obtained at 6 mm diameter, 130° point angle, 0.12 mm/rev feed rate, and 2500 rpm speed at three layer Scotch tape. From the optical micro-graphs of drilled holes, it has been found that the point angle is one of the most effective process parameters that significantly affects the delamination mechanism, followed by Scotch tape layers as compared to other parameters such as drill bit diameter, spindle speed, and feed rate.


2021 ◽  
Vol 49 (2) ◽  
pp. 422-429
Author(s):  
Sam Vimal ◽  
Achyuth Ramachandran ◽  
Anirudh Selvam ◽  
Karthick Subramanian

As composites are materials whose properties can essentially be customized to suit the necessities of the engineering application on hand, they are being widely used in many applications for radically different purposes. In order to ensure quality in production process of composite products, a solid understanding of the process involved during its manufacturing is essential to ensure the product is free from both internal and external defects. To that aim, a study was conducted to model Thrust force and Torque on drilling of Glass-Hemp-Flax reinforced polymer composite by fabricating and maching the composite as per Taguchi's L 27 Orthogonal Array. The process parameters considered for modeling are drill diameter, spindle speed and feed rate. Using the process control parameters as inputs and thrust force and torque to be predicted as outputs, artificial neural networks (ANNs) were created to model the effects of the inputs and their interactions. The predictions obtained from the neural networks were compared with the values obtained from experimentation. Excellent agreement was found between the two sets of values, establishing grounds for more extensive use of neural networks in modelling of machining parameters.


2020 ◽  
Vol 44 (5) ◽  
pp. 339-345
Author(s):  
Nagamadhu Mahadevappa ◽  
Vijay K. Shankar ◽  
Samuel Sehgal ◽  
Rajath Upadhya

Common fiber composite overlays are attractive for a few applications, (for example, aviation and flying machine auxiliary parts) because of their predominant properties and bio-degradable. Typically, mechanical drilling process parameters are significant effect final machining process outcomes. It covers drilling performance like convectional drilling, grinding, vibration-influence twist drilling, and rapid boring, drilling apparatus geometry and materials, drilling actuated delamination and its smothering methodologies, thrust power, and wear rate. This paper aimed to address the effect and ranking of process parameters on trust force, torque, and delamination at both entry and exit of the hole sisal fabric herringbone reinforced epoxy composites. The herringbone woven sisal fabric reinforced epoxy composite is fabricated using conventional compression molding technique. The result shows that at higher speed and feed rate delamination at both entrance and exit, thrust force, and toque decreases. Optimum drill diameter found from 6 to 10 mm to obtain minimum responses. As four output parameters are deciding quality of drilled hole, further grey regression analysis is used to study the ranking of output responses. Form grey regression analysis it is found that for 2700 rpm spindle speed, 60 mm/min feed and 8 mm diameter exhibit minimum effort.


2020 ◽  
Vol 10 (20) ◽  
pp. 7047
Author(s):  
Anirudh Venkatraman Krishnan ◽  
Penchal Matli ◽  
Gururaj Parande ◽  
Vyasaraj Manakari ◽  
Beng Chua ◽  
...  

Drilling is used in creating cylindrical through-holes for various applications. While optimizing drilling parameters is widespread, the effect of a drilled through-hole on the structural stability of components is not fully documented. The base material, along with other parameters, such as drill diameter, drill location and its orientation affect structural stability. Since carrying out tests on different base materials can be time consuming, simulation software can instead be used to provide valuable information. However, the comparison between experiments and simulations gets difficult; hence, this study attempts to provide a basis for effective comparison by studying simulations and compression tests, comparing the two, and documenting the role of drill hole orientation on the compressive response of magnesium, a material with immense potential in light-weight components. Simulations and experiments were carried out on three through-hole orientations and were compared to the undrilled scenario. Results demonstrate significant differences in compression behaviour. While the compressive yield strength increased in all three drill orientations, ultimate strength and ductility was reduced in horizontal and angular drill hole orientations. These observations, therefore, provide valuable insight into choosing the right orientation for different applications.


Sign in / Sign up

Export Citation Format

Share Document