scholarly journals Dual-population Co-evolution Multi-objective Optimization Algorithm and Its Application

In the multi-objective optimization algorithm, the parameter strategy has a huge impact on the performance of the algorithm, and it is difficult to set a set of parameters with excellent distribution and convergence performance in the actual optimization process. Based on the MOEA/D algorithm framework, this paper construct an improved dual-population co-evolution MOEA/D algorithm by adopt the idea of dual-population co-evolution. The simulation test of the benchmark functions shows that the proposed dual-population co-evolution MOEA/D algorithm have significant improvements in IGD and HV indicators compare with three other comparison algorithms. Finally, the application of the LTE base station power allocation model also verifies the effectiveness of the proposed algorithm.

2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


2009 ◽  
Vol 10 (1) ◽  
Author(s):  
Honglin Li ◽  
Hailei Zhang ◽  
Mingyue Zheng ◽  
Jie Luo ◽  
Ling Kang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document