Atmospheric Boundary Layer Dynamics Evaluation Using Piezo-Resistive Technology for Unpowered Areal Vehicles

2020 ◽  
Vol 2 (1) ◽  
pp. 1-19
Author(s):  
Alexander Shamliev ◽  
Peter Mitrouchev ◽  
Maya Dimitrova

The paper presents a method for real-time observing of the convectional processes in the atmosphere boundary layer. The essence of the method is in providing real-time measurement of temperature, humidity, and pressure during the flight of a glider (soaring flight). Based on these measurements, a real-time evaluation of the atmosphere dynamics is presented. Measurements are taken during soaring flight of the glider and during the flight of a remotely controlled quadrocopter. Additionally, a method for atmosphere thermal identification by the measured parameters is introduced. The main application areas of this work are in unpowered flights, as well as in extending the flight time and distance of powered aerial vehicles. Moreover, the paper can be useful in research and observation of the lowest portion of the atmosphere and micro-scaled atmosphere dynamics evaluation.

Author(s):  
Josep Maria Margarit-Taule ◽  
Pablo Gimenez-Gomez ◽  
Roger Escude-Pujol ◽  
Manuel Gutierrez-Capitan ◽  
Cecilia Jimenez-Jorquera ◽  
...  

1993 ◽  
Vol 268 (31) ◽  
pp. 23106-23110
Author(s):  
K Kikuchi ◽  
T Nagano ◽  
H Hayakawa ◽  
Y Hirata ◽  
M Hirobe

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3592
Author(s):  
Naipeng Liu ◽  
Di Zhang ◽  
Hui Gao ◽  
Yule Hu ◽  
Longchen Duan

The accurate and frequent measurement of the drilling fluid’s rheological properties is essential for proper hydraulic management. It is also important for intelligent drilling, providing drilling fluid data to establish the optimization model of the rate of penetration. Appropriate drilling fluid properties can improve drilling efficiency and prevent accidents. However, the drilling fluid properties are mainly measured in the laboratory. This hinders the real-time optimization of drilling fluid performance and the decision-making process. If the drilling fluid’s properties cannot be detected and the decision-making process does not respond in time, the rate of penetration will slow, potentially causing accidents and serious economic losses. Therefore, it is important to measure the drilling fluid’s properties for drilling engineering in real time. This paper summarizes the real-time measurement methods for rheological properties. The main methods include the following four types: an online rotational Couette viscometer, pipe viscometer, mathematical and physical model or artificial intelligence model based on a Marsh funnel, and acoustic technology. This paper elaborates on the principle, advantages, limitations, and usage of each method. It prospects the real-time measurement of drilling fluid rheological properties and promotes the development of the real-time measurement of drilling rheological properties.


Sign in / Sign up

Export Citation Format

Share Document