Optimal Training of Artificial Neural Networks to Forecast Power System State Variables

2014 ◽  
Vol 3 (1) ◽  
pp. 65-82 ◽  
Author(s):  
Victor Kurbatsky ◽  
Denis Sidorov ◽  
Nikita Tomin ◽  
Vadim Spiryaev

The problem of forecasting state variables of electric power system is studied. The paper suggests data-driven adaptive approach based on hybrid-genetic algorithm which combines the advantages of genetic algorithm and simulated annealing algorithm. The proposed method has two stages. At the first stage the input signal is decomposed into orthogonal basis functions based on the Hilbert-Huang transform. The genetic algorithm and simulated annealing algorithm are applied to optimal training of the artificial neural network and support vector machine at the second stage. The results of applying the developed approach for the short-term forecasts of active power flows in the electric networks are presented. The best efficiency of proposed approach is demonstrated on real retrospective data of active power flow forecast using the hybrid-genetic support vector machine algorithm.

2013 ◽  
Vol 760-762 ◽  
pp. 1987-1991
Author(s):  
Yun Fa Li

To master the variation regularity of finance, obtain greater benefits in stock investment. study of the support vector machine and application in prediction of stock market. The simulated annealing algorithm to optimize the least squares support vector machine prediction model, and the least square support vector machine and simulated annealing algorithm is described, given the optimal prediction model. Through the research on the simulation of the Hang Seng Index, shows that this method is simple, fast convergence, the algorithm with high accuracy. Has the actual guiding sense for investors, the stock market of the financial firm to operate.


2013 ◽  
Vol 798-799 ◽  
pp. 842-845
Author(s):  
Li Zhe Ma

In order to improve the prediction accuracy of stock index, eliminate of the blindness of parameters selection for support vector machine, a stock index prediction method combined the genetic simulated annealing algorithm (GASA) which integrated the parallel search of genetic algorithm with the probabilistic sudden jumping characteristics of simulated annealing algorithm, with support vector machine (SVM) is proposed. Using daily data of Shanghai stock index opening quotation which is normalization processed, the stock index prediction model based on GASA-SVM is established. Optimal parameter error penalty parameter c=1 and Gaussian kernel parameter g=1.625 are obtained. Compared the result with GA-SVM prediction model, the comparative analysis shows that GASA-SVM(MSE= 0.000191111) model prediction capabilities are superior to GA-SVM(MSE=0.000018825) prediction model. It can provide valuable references for the investors.


2020 ◽  
Vol 40 (23) ◽  
pp. 2314002
Author(s):  
尤阳 You Yang ◽  
漆云凤 Qi Yunfeng ◽  
沈辉 Shen Hui ◽  
邹星星 Zou Xingxing ◽  
何兵 He Bing ◽  
...  

Author(s):  
H. Bazargan ◽  
H. Bahai ◽  
F. Aryana ◽  
S. F. Yasseri

The aim of this work is to simulate the 3-houly mean zero-up-crossing wave periods (Tzs) of the sea-states of a future period for a location in the North East Pacific. Seven multi-layer artificial neural networks (ANNs) were trained with simulated annealing algorithm. The output of each ANN was used for estimating each of the 7 parameters of a new distribution, described in Appendix A, called hepta-parameter spline proposed for the conditional distribution of the Tz given some significant wave heights and mean zero-up-crossing wave periods. After estimating the parameters of the conditional distributions, the Tzs have been forecasted from the hepta-parameter spline distributions corresponding to the Tzs of the period.


2020 ◽  
Vol 80 (5) ◽  
pp. 910-931
Author(s):  
Anthony W. Raborn ◽  
Walter L. Leite ◽  
Katerina M. Marcoulides

This study compares automated methods to develop short forms of psychometric scales. Obtaining a short form that has both adequate internal structure and strong validity with respect to relationships with other variables is difficult with traditional methods of short-form development. Metaheuristic algorithms can select items for short forms while optimizing on several validity criteria, such as adequate model fit, composite reliability, and relationship to external variables. Using a Monte Carlo simulation study, this study compared existing implementations of the ant colony optimization, Tabu search, and genetic algorithm to select short forms of scales, as well as a new implementation of the simulated annealing algorithm. Selection of short forms of scales with unidimensional, multidimensional, and bifactor structure were evaluated, with and without model misspecification and/or an external variable. The results showed that when the confirmatory factor analysis model of the full form of the scale was correctly specified or had only minor misspecification, the four algorithms produced short forms with good psychometric qualities that maintained the desired factor structure of the full scale. Major model misspecification resulted in worse performance for all algorithms, but including an external variable only had minor effects on results. The simulated annealing algorithm showed the best overall performance as well as robustness to model misspecification, while the genetic algorithm produced short forms with worse fit than the other algorithms under conditions with model misspecification.


Sign in / Sign up

Export Citation Format

Share Document