Complex Events Processing on Live News Events Using Apache Kafka and Clustering Techniques

2021 ◽  
Vol 17 (1) ◽  
pp. 39-52
Author(s):  
Aditya Kamleshbhai Lakkad ◽  
Rushit Dharmendrabhai Bhadaniya ◽  
Vraj Nareshkumar Shah ◽  
Lavanya K.

The explosive growth of news and news content generated worldwide, coupled with the expansion through online media and rapid access to data, has made trouble and screening of news tedious. An expanding need for a model that can reprocess, break down, and order main content to extract interpretable information, explicitly recognizing subjects and content-driven groupings of articles. This paper proposed automated analyzing heterogeneous news through complex event processing (CEP) and machine learning (ML) algorithms. Initially, news content streamed using Apache Kafka, stored in Apache Druid, and further processed by a blend of natural language processing (NLP) and unsupervised machine learning (ML) techniques.

2020 ◽  
Author(s):  
Patrick James Ward ◽  
April M Young

BACKGROUND Public health surveillance is critical to detecting emerging population health threats and improvements. Surveillance data has increased in size and complexity, posing challenges to data management and analysis. Natural language processing (NLP) and machine learning (ML) are valuable tools for analysis of unstructured data involving free-text and have been used in innovative ways to examine a variety of health outcomes. OBJECTIVE Given the cross-disciplinary applications of NLP and ML, research on their applications in surveillance have been disseminated in a variety of outlets. As such, the aim of this narrative review was to describe the current state of NLP and ML use in surveillance science and to identify directions in future research. METHODS Information was abstracted from articles describing the use of natural language processing and machine learning in public health surveillance identified through a PubMed search. RESULTS Twenty-two articles met review criteria, 12 involving traditional surveillance data sources and 10 involving online media sources for surveillance. Traditional surveillance sources analyzed with NLP and ML consisted primarily of death certificates (n=6), hospital data (n=5), and online media sources (e.g., Twitter) (n=8). CONCLUSIONS The reviewed articles demonstrate the potential of NLP and ML to enhance surveillance data through improving timeliness of surveillance, identifying cases in the absence of standardized case definitions, and enabling mining of social media for public health surveillance.


2019 ◽  
Vol 26 (11) ◽  
pp. 1355-1359 ◽  
Author(s):  
Joshua Feldman ◽  
Andrea Thomas-Bachli ◽  
Jack Forsyth ◽  
Zaki Hasnain Patel ◽  
Kamran Khan

Abstract Objective We assessed whether machine learning can be utilized to allow efficient extraction of infectious disease activity information from online media reports. Materials and Methods We curated a data set of labeled media reports (n = 8322) indicating which articles contain updates about disease activity. We trained a classifier on this data set. To validate our system, we used a held out test set and compared our articles to the World Health Organization Disease Outbreak News reports. Results Our classifier achieved a recall and precision of 88.8% and 86.1%, respectively. The overall surveillance system detected 94% of the outbreaks identified by the WHO covered by online media (89%) and did so 43.4 (IQR: 9.5–61) days earlier on average. Discussion We constructed a global real-time disease activity database surveilling 114 illnesses and syndromes. We must further assess our system for bias, representativeness, granularity, and accuracy. Conclusion Machine learning, natural language processing, and human expertise can be used to efficiently identify disease activity from digital media reports.


Author(s):  
Rohan Pandey ◽  
Vaibhav Gautam ◽  
Ridam Pal ◽  
Harsh Bandhey ◽  
Lovedeep Singh Dhingra ◽  
...  

BACKGROUND The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this ‘Infodemic’ requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. OBJECTIVE We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. METHODS We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. RESULTS A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot “Satya” increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. CONCLUSIONS We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation. CLINICALTRIAL Not Applicable


2021 ◽  
Vol 28 (1) ◽  
pp. e100262
Author(s):  
Mustafa Khanbhai ◽  
Patrick Anyadi ◽  
Joshua Symons ◽  
Kelsey Flott ◽  
Ara Darzi ◽  
...  

ObjectivesUnstructured free-text patient feedback contains rich information, and analysing these data manually would require a lot of personnel resources which are not available in most healthcare organisations.To undertake a systematic review of the literature on the use of natural language processing (NLP) and machine learning (ML) to process and analyse free-text patient experience data.MethodsDatabases were systematically searched to identify articles published between January 2000 and December 2019 examining NLP to analyse free-text patient feedback. Due to the heterogeneous nature of the studies, a narrative synthesis was deemed most appropriate. Data related to the study purpose, corpus, methodology, performance metrics and indicators of quality were recorded.ResultsNineteen articles were included. The majority (80%) of studies applied language analysis techniques on patient feedback from social media sites (unsolicited) followed by structured surveys (solicited). Supervised learning was frequently used (n=9), followed by unsupervised (n=6) and semisupervised (n=3). Comments extracted from social media were analysed using an unsupervised approach, and free-text comments held within structured surveys were analysed using a supervised approach. Reported performance metrics included the precision, recall and F-measure, with support vector machine and Naïve Bayes being the best performing ML classifiers.ConclusionNLP and ML have emerged as an important tool for processing unstructured free text. Both supervised and unsupervised approaches have their role depending on the data source. With the advancement of data analysis tools, these techniques may be useful to healthcare organisations to generate insight from the volumes of unstructured free-text data.


2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tomasz Oliwa ◽  
Steven B. Maron ◽  
Leah M. Chase ◽  
Samantha Lomnicki ◽  
Daniel V.T. Catenacci ◽  
...  

PURPOSE Robust institutional tumor banks depend on continuous sample curation or else subsequent biopsy or resection specimens are overlooked after initial enrollment. Curation automation is hindered by semistructured free-text clinical pathology notes, which complicate data abstraction. Our motivation is to develop a natural language processing method that dynamically identifies existing pathology specimen elements necessary for locating specimens for future use in a manner that can be re-implemented by other institutions. PATIENTS AND METHODS Pathology reports from patients with gastroesophageal cancer enrolled in The University of Chicago GI oncology tumor bank were used to train and validate a novel composite natural language processing-based pipeline with a supervised machine learning classification step to separate notes into internal (primary review) and external (consultation) reports; a named-entity recognition step to obtain label (accession number), location, date, and sublabels (block identifiers); and a results proofreading step. RESULTS We analyzed 188 pathology reports, including 82 internal reports and 106 external consult reports, and successfully extracted named entities grouped as sample information (label, date, location). Our approach identified up to 24 additional unique samples in external consult notes that could have been overlooked. Our classification model obtained 100% accuracy on the basis of 10-fold cross-validation. Precision, recall, and F1 for class-specific named-entity recognition models show strong performance. CONCLUSION Through a combination of natural language processing and machine learning, we devised a re-implementable and automated approach that can accurately extract specimen attributes from semistructured pathology notes to dynamically populate a tumor registry.


Sign in / Sign up

Export Citation Format

Share Document