scholarly journals Lightweight load-balanced and authentication scheme for a cluster-based wireless sensor network

2021 ◽  
Vol 17 (2) ◽  
pp. 155014772098032
Author(s):  
Jiliang Zhou ◽  
Ziqiang Lin

Clustering technology is one of the crucial technologies to prolong the lifetime in wireless sensor networks. However, most cluster schemes choose cluster head randomly to send data without considering load balancing and security. In addition, some cluster heads in the highly active area may be overloaded, while others in the low active area may be overloaded, which may easily lead to extreme imbalance in task allocation. Our research on relevant literature shows that the existing authentication schemes do not fully consider the load balancing of cluster heads, while the load balancing schemes ignore the security authentication of cluster heads. Therefore, this article effectively combines load balancing and security verification, and proposes a lightweight load balancing and verification scheme (secure load and energy balancing) based on clustered wireless sensor networks. Secure load and energy balancing implements cluster head’s authentication and confidentiality and integrity of all messages in load balancing. This scheme not only effectively maintains the energy balance of the whole network but also successfully improves the security overhead, thus prolonging the network lifetime. The simulation results show that compared with other similar schemes, this scheme has higher packet forwarding rate, longer network life, and lower overhead. This further proves that the scheme is energy-saving, safe, dynamic, stable, and sustainable.

2019 ◽  
Vol 7 (2) ◽  
pp. 7-16
Author(s):  
Poonam Mittal ◽  

Dynamic and cooperative nature of sensor nodes in Wireless Sensor Networks raises question on security. Various researchers work in this direction to spot malicious, selfish and compromised nodes. Various mechanisms followed are uniqueness of clustering, reputation system and an operation at specific nodes. LEACH is a hierarchical protocol in which most nodes transmit to cluster heads, and the cluster heads aggregate and compress the data and forward it to the base station (sink). Each node uses a stochastic algorithm at each round to determine whether it will become a cluster head in this round. Clustering process carried out in two stages takes the role of the reputation scheme and reveals specific operation at CH, IN and MNs beside their usual activities in cluster based wireless sensor networks. This paper mentioned the final structure of the security framework, corresponding attacks and defense mechanism of the model. It also discusses various security level processes of wireless sensor networks. Results implies that in a cluster-based protocol such as LEACH in which optimally 5% of the nodes are cluster heads it is likely that a significant portion of the network can be paralyzed or the entire network disabled, in the worst-case scenario, if these cluster heads are compromised. Our main contribution in this paper is our novel approach in maintaining trusted clusters through a trust-based decision-making cluster head election algorithm.


Author(s):  
Nnaemeka Chiemezie Onuekwusi ◽  
Michael Chukwudi Ndinechi ◽  
Gordon Chiagozie Ononiwu ◽  
Onyebuchi Chikezie Nosiri

This article addresses the challenges of routing hole and network partitioning often experienced in hierarchical wireless sensor networks (WSNs). This developed model classifies network nodes into sets for effective energy management and formulates two cluster networks namely: switching and non-switching networks. Both networks are considered homogeneous and static WSNs and adopted approaches of residual energy, multi-hop and minimal distance as routing decision parameters. The switching network in addition introduces an energy switching factor as a major decision parameter for the switching of cluster head roles amongst cluster nodes. Network simulation was done using Truetime 2.0 and energy dissipation of the respective nodes and cluster heads was observed against a threshold. Results showed the introduction of the energy switching factor gave a significant energy balancing effect as nodes exhibited uniform energy dissipation. Furthermore, the residual energies for most nodes were above the threshold eliminating the possibility of the presence of routing hole and network partitioning.


2012 ◽  
Vol 542-543 ◽  
pp. 643-646
Author(s):  
Li Jun Chen

Clustering is an effective topology control approach in wireless sensor networks, which can increase network scalability and lifetime. A clustering algorithm based on the total number of neighbor nodes is proposed to maximize the lifetime of the network. The larger amount of neighbor nodes, the more chance a node has to be selected as a cluster head. Therefore, it can ensure the minimum cluster heads in the whole network. By closing the communication parts of cluster head to avoid selecting as cluster head in next epoch, the energy of the whole system is consumed symmetrically. The simulations demonstrate the effectiveness of the algorithm.


2014 ◽  
Vol 667 ◽  
pp. 291-299
Author(s):  
Chun Xi Yang ◽  
Chao Sun ◽  
Sha Fan ◽  
Ning Wu

According to these constrains that wireless sensor networks are composed of many wireless nodes with limited power, a new energy efficient cluster-based distributed consensus kalman filtering algorithm is proposed in this paper. In this algorithm, each cluster contains a cluster-head and some member nodes where the cluster-head is used to fuse data which come from member nodes and consensus process between neighbor cluster-head. This clustering method divide wireless sensor networks into two classes of networks: cluster units network and cluster-heads network. In this way, numbers of information transmission among nodes are reduced efficiently and communication distances among nodes are also shortened. As a result, node’s energy in wireless sensor network can be saved greatly. Moreover, Gossip algorithm is introduced to deal with the consensus problem between cluster-heads for improving power consumption and the convergence analysis for the algorithm which is given by applying to graph theory and matrix theory. Finally, a simulation example is given to show the effectively of our method.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jun Wang ◽  
Zhuangzhuang Du ◽  
Zhengkun He ◽  
Xunyang Wang

Balancing energy consumption using the clustering routing algorithms is one of the most practical solutions for prolonging the lifetime of resource-limited wireless sensor networks (WSNs). However, existing protocols cannot adequately minimize and balance the total network energy dissipation due to the additional tasks of data acquisition and transmission of cluster heads. In this paper, a cluster-head rotating election routing protocol is proposed to alleviate the problem. We discovered that the regular hierarchical clustering method and the scheme of cluster-head election area division had positive effects on reducing the energy consumption of cluster head election and intracluster communication. The election criterion composed of location and residual energy factor was proved to lower the probability of premature death of cluster heads. The chain multihop path of intercluster communication was performed to save the energy of data aggregation to the base station. The simulation results showed that the network lifetime can be efficiently extended by regulating the adjustment parameters of the protocol. Compared with LEACH, I-LEACH, EEUC, and DDEEC, the algorithm demonstrated significant performance advantages by using the number of active nodes and residual energy of nodes as the evaluation indicators. On the basis of these results, the proposed routing protocols can be utilized to increase the capability of WSNs against energy constraints.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenjiang Zhang ◽  
Yanan Wang ◽  
Fuxing Song ◽  
Wenyu Zhang

In wireless sensor networks (WSNs), energy-constrained sensor nodes are always deployed in hazardous and inaccessible environments, making energy management a key problem for network design. The mechanism of RNTA (redundant node transmission agents) lacks an updating mechanism for the redundant nodes, causing an unbalanced energy distribution among sensor nodes. This paper presents an energy-balanced mechanism for hierarchical routing (EBM-HR), in which the residual energy of redundant nodes is quantified and made hierarchic, so that the cluster head can dynamically select the redundant node with the highest residual energy grade as a relay to complete the information transmission to the sink node and achieve an intracluster energy balance. In addition, the network is divided into several layers according to the distances between cluster heads and the sink node. Based on the energy consumption of the cluster heads, the sink node will decide to recluster only in a certain layer so as to achieve an intercluster energy balance. Our approach is evaluated by a simulation comparing the LEACH algorithm to the HEED algorithm. The results demonstrate that the BEM-HR mechanism can significantly boost the performance of a network in terms of network lifetime, data transmission quality, and energy balance.


2013 ◽  
Vol 631-632 ◽  
pp. 1409-1415
Author(s):  
Yu Quan Zhang ◽  
Yan Wang

A Secure Strategy for Location-Based Wireless Sensor N A cluster-based secure strategy for wireless sensor networks is proposed. The two-dimension sensing area comprises a number of clusters, each of which contains four small squares called cells. The WSNs structure is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their cluster heads. The cluster heads establish their pairwise keys through utilizing a key pre-distribution scheme based on cluster head identifications and the ordinary sensors establish their pairwise keys through employing a dynamic key management strategy based on exclusion-based systems (EBSs). Analysis and comparison show this scheme enhances the WSNs security, decreases WSNs communication consumption, saves cluster head and sensor energy expenditure, and prolongs the lifetime of both cluster heads and ordinary sensors.etworks


2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


Sign in / Sign up

Export Citation Format

Share Document