Byzantine Fault-Tolerant Architecture in Cloud Data Management

2016 ◽  
Vol 7 (3) ◽  
pp. 86-98 ◽  
Author(s):  
Mohammed A. AlZain ◽  
Alice S. Li ◽  
Ben Soh ◽  
Mehedi Masud

One of the main challenges in cloud computing is to build a healthy and efficient storage for securely managing and preserving data. This means a cloud service provider needs to make sure that its clients' outsourced data are stored securely and, data queries and retrievals are executed correctly and privately. On the other hand, it may also mean businesses are willing to outsource their data to a third party only if they trust their data are not accessible and visible to the service provider and other non-authorized parties. However, one of the major obstacles faced here for ensuring data reliability and security is Byzantine faults. While Byzantine fault tolerance (BFT) has received growing attention from the academic research community, the research done is generally from the distributed computing point of view, and hence finds little practical use in cloud computing. To that end, the focus of this paper is to discuss how these faults can be tolerated with the authors' proposed conceptualization of Byzantine data faults and fault-tolerant architecture in cloud data management.

2019 ◽  
pp. 889-902
Author(s):  
Mohammed A. AlZain ◽  
Alice S. Li ◽  
Ben Soh ◽  
Mehedi Masud

One of the main challenges in cloud computing is to build a healthy and efficient storage for securely managing and preserving data. This means a cloud service provider needs to make sure that its clients' outsourced data are stored securely and, data queries and retrievals are executed correctly and privately. On the other hand, it may also mean businesses are willing to outsource their data to a third party only if they trust their data are not accessible and visible to the service provider and other non-authorized parties. However, one of the major obstacles faced here for ensuring data reliability and security is Byzantine faults. While Byzantine fault tolerance (BFT) has received growing attention from the academic research community, the research done is generally from the distributed computing point of view, and hence finds little practical use in cloud computing. To that end, the focus of this paper is to discuss how these faults can be tolerated with the authors' proposed conceptualization of Byzantine data faults and fault-tolerant architecture in cloud data management.


2016 ◽  
pp. 1205-1222
Author(s):  
Mohammed A. AlZain ◽  
Alice S. Li ◽  
Ben Soh ◽  
Eric Pardede

Cloud computing is a phenomenal distributed computing paradigm that provides flexible, low-cost on-demand data management to businesses. However, this so-called outsourcing of computing resources causes business data security and privacy concerns. Although various methods have been proposed to deal with these concerns, none of these relates to multi-clouds. This paper presents a practical data management model in a public and private multi-cloud environment. The proposed model BFT-MCDB incorporates Shamir's Secret Sharing approach and Quantum Byzantine Agreement protocol to improve trustworthiness and security of business data storage, without compromising performance. The performance evaluation is carried out using a cloud computing simulator called CloudSim. The experimental results show significantly better performance in terms of data storage and data retrieval compared to other common cloud cryptographic based models. The performance evaluation based on CloudSim experiments demonstrates the feasibility of the proposed multi-cloud data management model.


2015 ◽  
Vol 5 (3) ◽  
pp. 35-52 ◽  
Author(s):  
Mohammed A. AlZain ◽  
Alice S. Li ◽  
Ben Soh ◽  
Eric Pardede

Cloud computing is a phenomenal distributed computing paradigm that provides flexible, low-cost on-demand data management to businesses. However, this so-called outsourcing of computing resources causes business data security and privacy concerns. Although various methods have been proposed to deal with these concerns, none of these relates to multi-clouds. This paper presents a practical data management model in a public and private multi-cloud environment. The proposed model BFT-MCDB incorporates Shamir's Secret Sharing approach and Quantum Byzantine Agreement protocol to improve trustworthiness and security of business data storage, without compromising performance. The performance evaluation is carried out using a cloud computing simulator called CloudSim. The experimental results show significantly better performance in terms of data storage and data retrieval compared to other common cloud cryptographic based models. The performance evaluation based on CloudSim experiments demonstrates the feasibility of the proposed multi-cloud data management model.


2014 ◽  
Vol 614 ◽  
pp. 468-471
Author(s):  
Yue Ling Zhang ◽  
Gang Xu ◽  
Jiang Tao Wang

This paper is aimed to maximize computing resources and improve performances of CMEP by using REST style cloud management interfaces to operate data, using open authentication constructor to validate requests, designing schedule algorithms and distributing cloud computing based on executing and user’s purchase situation. Experiments showed that, high performance cloud data management would significantly shorten response time, expand erupt simultaneously count and scalability.


2020 ◽  
Vol 5 (17) ◽  
pp. 6-10
Author(s):  
Md. Farooque ◽  
Kailash Patidar ◽  
Rishi Kushwah ◽  
Gaurav Saxena

This paper explores different security aspects in cloud computing environment. It includes data sharing mechanism, inter cloud communication, data breaches, data control, user-cloud relationship along with the cloud data management with standard security algorithms. It also covers the related reviews and analytical analysis on the traditional approaches for the gap identification. So, a short meta-analysis has been presented based on the method discussed along with the advantages and challenges found. It also explores the future prospective where there is the need of exploration and research.


2014 ◽  
Vol 13 (7) ◽  
pp. 4625-4632
Author(s):  
Jyh-Shyan Lin ◽  
Kuo-Hsiung Liao ◽  
Chao-Hsing Hsu

Cloud computing and cloud data storage have become important applications on the Internet. An important trend in cloud computing and cloud data storage is group collaboration since it is a great inducement for an entity to use a cloud service, especially for an international enterprise. In this paper we propose a cloud data storage scheme with some protocols to support group collaboration. A group of users can operate on a set of data collaboratively with dynamic data update supported. Every member of the group can access, update and verify the data independently. The verification can also be authorized to a third-party auditor for convenience.


2014 ◽  
Vol 36 (7) ◽  
pp. 1485-1499 ◽  
Author(s):  
Jie SONG ◽  
Tian-Tian LI ◽  
Zhi-Liang ZHU ◽  
Yu-Bin BAO ◽  
Ge YU

2021 ◽  
Vol 14 (7) ◽  
pp. 1166-1166
Author(s):  
Sujaya Maiyya ◽  
Faisal Nawab ◽  
Divyakant Agrawal ◽  
Amr El Abbadi

This errata article discusses and corrects a minor error in our work published in VLDB 2019. The discrepancy specifically pertains to Algorithms 3 and 4. The algorithms presented in the paper are biased towards a commit decision in a specific failure scenario. We explain the error using an example before correcting the algorithm.


Sign in / Sign up

Export Citation Format

Share Document