A Particle Swarm Optimization Approach for Minimizing GD&T Error in Additive Manufactured Parts

Author(s):  
Vimal Kumar Pathak ◽  
Amit Kumar Singh

This paper presents a particle swarm optimization (PSO) approach to improve the geometrical accuracy of additive manufacturing (AM) parts by minimizing geometrical dimensioning and tolerancing (GD&T) error. Four AM process parameters viz. Bed temperature, nozzle temperature, Infill, layer thickness are taken as input while circularity and flatness error in ABS part are taken as response. A mathematical model is developed for circularity and flatness error individually using regression technique in terms of process parameters as design variables. For the optimum search of the AM process parameter values, minimization of circularity and flatness are formulated as multi-objective, multi-variable optimization problem which is optimized using particle swarm optimization (PSO) algorithm and hence improving the geometrical accuracy of the ABS part.

2020 ◽  
pp. 207-219
Author(s):  
Vimal Kumar Pathak ◽  
Amit Kumar Singh

This paper presents a particle swarm optimization (PSO) approach to improve the geometrical accuracy of additive manufacturing (AM) parts by minimizing geometrical dimensioning and tolerancing (GD&T) error. Four AM process parameters viz. Bed temperature, nozzle temperature, Infill, layer thickness are taken as input while circularity and flatness error in ABS part are taken as response. A mathematical model is developed for circularity and flatness error individually using regression technique in terms of process parameters as design variables. For the optimum search of the AM process parameter values, minimization of circularity and flatness are formulated as multi-objective, multi-variable optimization problem which is optimized using particle swarm optimization (PSO) algorithm and hence improving the geometrical accuracy of the ABS part.


Author(s):  
A. Safari ◽  
K. H. Hajikolaei ◽  
H. G. Lemu ◽  
G. G. Wang

Although metaheuristic techniques have recently become popular in optimization, still they are not suitable for computationally expensive real-world problems, specifically when the problems have many input variables. Among these techniques, particle swarm optimization (PSO) is one of the most well-known population-based nature-inspired algorithms which can intelligently search huge spaces of possible arrangements of design variables to solve various complex problems. The candidate solutions and accordingly the required number of evaluated particles, however, dramatically increase with the number of design variables or the dimension of the problem. This study is a major modification to an original PSO for using all previously evaluated points aiming to increase the computational efficiency. For this purpose, a metamodeling methodology appropriate for so-called high-dimensional, expensive, black-box (HEB) problems is used to efficiently generate an approximate function from all particles calculated during the optimization process. Following the metamodel construction, a term named metamodeling acceleration is added to the velocity update formula in the original PSO algorithm using the minimum of the metamodel. The proposed strategy is called the metamodel guided particle swarm optimization (MGPSO) algorithm. The superior performance of the approach is compared with original PSO using several benchmark problems with different numbers of variables. The developed algorithm is then used to optimize the aerodynamic design of a gas turbine compressor blade airfoil as a challenging HEB problem. The simulation results illustrated the MGPSO’s capability to achieve more accurate results with a considerably smaller number of function evaluations.


Author(s):  
Chunli Zhu ◽  
Yuan Shen ◽  
Xiujun Lei

Traditional template matching-based motion estimation is a popular but time-consuming method for vibration vision measurement. In this study, the particle swarm optimization (PSO) algorithm is improved to solve this time-consumption problem. The convergence speed of the algorithm is increased using the adjacent frames search method in the particle swarm initialization process. A flag array is created to avoid repeated calculation in the termination strategy. The subpixel positioning accuracy is ensured by applying the surface fitting method. The robustness of the algorithm is ensured by applying the zero-mean normalized cross correlation. Simulation results demonstrate that the average extraction error of the improved PSO algorithm is less than 1%. Compared with the commonly used three-step search algorithm, diamond search algorithm, and local search algorithm, the improved PSO algorithm consumes the least number of search points. Moreover, tests on real-world image sequences show good estimation accuracy at very low computational cost. The improved PSO algorithm proposed in this study is fast, accurate, and robust, and is suitable for plane motion estimation in vision measurement.


Author(s):  
T-H Kim ◽  
I Maruta ◽  
T Sugie

Engineering optimization problems usually contain various constraints and mixed integer-discrete-continuous type of design variables. This article proposes an efficient particle swarm optimization (PSO) algorithm for such problems. First, the constrained optimization problem is transformed into an unconstrained problem without introducing any problem-dependent or user-defined parameters such as penalty factors or Lagrange multipliers, though such parameters are usually required in general optimization algorithms. Then, the above PSO method is extended to handle integer, discrete, and continuous design variables in a simple manner, yet with a high degree of precision. The proposed PSO scheme is fairly simple and thus it is easy to implement. In order to demonstrate the effectiveness of our method, several mechanical design optimization problems are solved, and the numerical results are compared with those reported in the literature.


Author(s):  
Singiresu S. Rao ◽  
Kiran K. Annamdas

Particle swarm methodologies are presented for the solution of constrained mechanical and structural system optimization problems involving single or multiple objective functions with continuous or mixed design variables. The particle swarm optimization presented is a modified particle swarm optimization approach, with better computational efficiency and solution accuracy, is based on the use of dynamic maximum velocity function and bounce method. The constraints of the optimization problem are handled using a dynamic penalty function approach. To handle the discrete design variables, the closest discrete approach is used. Multiple objective functions are handled using a modified cooperative game theory approach. The applicability and computational efficiency of the proposed particle swarm optimization approach are demonstrated through illustrate examples involving single and multiple objectives as well as continuous and mixed design variables. The present methodology is expected to be useful for the solution of a variety of practical engineering design optimization problems.


2014 ◽  
Vol 31 (4) ◽  
pp. 726-741 ◽  
Author(s):  
Jiyang Dai ◽  
Jin Ying ◽  
Chang Tan

Purpose – The purpose of this paper is to present a novel optimization approach to design a robust H-infinity controller. Design/methodology/approach – To use a modified particle swarm optimization (PSO) algorithm and to search for the optimal parameters of the weighting functions under the circumstance of the given structures of three weighting matrices in the H-infinity mixed sensitivity design. Findings – This constrained multi-objective optimization is a non-convex, non-smooth problem which is solved by a modified PSO algorithm. An adaptive mutation-based PSO (AMBPSO) algorithm is proposed to improve the search accuracy and convergence of the standard PSO algorithm. In the AMBPSO algorithm, the inertia weights are modified as a function with the gradient descent and the velocities and positions of the particles. Originality/value – The AMBPSO algorithm can efficiently solve such an optimization problem that a satisfactory robust H-infinity control performance can be obtained.


Author(s):  
Wei-Der Chang

Engineering optimization problems can be always classified into two main categories including the linear programming (LP) and nonlinear programming (NLP) problems. Each programming problem further involves the unconstrained conditions and constrained conditions for design variables of the optimized system. This paper will focus on the issue about the design problem of NLP with the constrained conditions. The employed method for such NLP problems is a variant of particle swarm optimization (PSO), named improved particle swarm optimization (IPSO). The developed IPSO is to modify the velocity updating formula of the algorithm to enhance the search ability for given optimization problems. In this work, many different kinds of physical engineering optimization problems are examined and solved via the proposed IPSO algorithm. Simulation results compared with various optimization methods reported in the literature will show the effectiveness and feasibility for solving NLP problems with the constrained conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Hang Gui ◽  
Ruisheng Sun ◽  
Wei Chen ◽  
Bin Zhu

This paper presents a new parametric optimization design to solve a class of reaction control system (RCS) problem with discrete switching state, flexible working time, and finite-energy control for maneuverable reentry vehicles. Based on basic particle swarm optimization (PSO) method, an exponentially decreasing inertia weight function is introduced to improve convergence performance of the PSO algorithm. Considering the PSO algorithm spends long calculation time, a suboptimal control and guidance scheme is developed for online practical design. By tuning the control parameters, we try to acquire efficacy as close as possible to that of the PSO-based solution which provides a reference. Finally, comparative simulations are conducted to verify the proposed optimization approach. The results indicate that the proposed optimization and control algorithm has good performance for such RCS of maneuverable reentry vehicles.


Algorithms ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 255
Author(s):  
Gui-Rong You ◽  
Yeou-Ren Shiue ◽  
Wei-Chang Yeh ◽  
Xi-Li Chen ◽  
Chih-Ming Chen

In ensemble learning, accuracy and diversity are the main factors affecting its performance. In previous studies, diversity was regarded only as a regularization term, which does not sufficiently indicate that diversity should implicitly be treated as an accuracy factor. In this study, a two-stage weighted ensemble learning method using the particle swarm optimization (PSO) algorithm is proposed to balance the diversity and accuracy in ensemble learning. The first stage is to enhance the diversity of the individual learner, which can be achieved by manipulating the datasets and the input features via a mixed-binary PSO algorithm to search for a set of individual learners with appropriate diversity. The purpose of the second stage is to improve the accuracy of the ensemble classifier using a weighted ensemble method that considers both diversity and accuracy. The set of weighted classifier ensembles is obtained by optimization via the PSO algorithm. The experimental results on 30 UCI datasets demonstrate that the proposed algorithm outperforms other state-of-the-art baselines.


2012 ◽  
Vol 61 (2) ◽  
pp. 139-148 ◽  
Author(s):  
Łukasz Knypiński ◽  
Lech Nowak ◽  
Piotr Sujka ◽  
Kazimierz Radziuk

Application of a PSO algorithm for identification of the parameters of Jiles-Atherton hysteresis modelIn the paper an algorithm and computer code for the identification of the hysteresis parameters of the Jiles-Atherton model have been presented. For the identification the particle swarm optimization method (PSO) has been applied. In the optimization procedure five design variables has been assumed. The computer code has been elaborated using Delphi environment. Three types of material have been examined. The results of optimization have been compared to experimental ones. Selected results of the calculation for different material are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document