scholarly journals Evaluating Optimal Parameters for Machining Selective Laser Melting Titanium Alloy Using Wire Cut Electrical Discharge Machining

Author(s):  
Ashwin Polishetty ◽  
Guy Littlefair

Titanium is known for its poor machinability characteristics due to its low thermal conductivity and high chemical reactivity. This article explores the machinability characteristics of selective laser melting (SLM) titanium alloy Ti-6Al-4V using wire cut electrical discharge machining (WEDM). For titanium alloys, exploring non-traditional machining operation such as WEDM is critical for a material failure or success in a design application. The research is to study the effect of parameters such as servo voltage, pulse on/off, and machining speed with respect to wire tension and wire feed rate on machinability. The outputs under consideration for evaluating machinability are metal removal rate (MRR) and surface finish under minimal interruption due to wire snaps. The article concludes by identifying the optimal factors responsible to produce an efficient and accurate cut with a minimum downtime.

2021 ◽  
Author(s):  
Dragan Rodic ◽  
Marin Gostimirovic ◽  
Milenko Sekulic ◽  
Borislav Savkovic ◽  
Branko Strbac

Abstract It is well known that electrical discharge machining can be used in the processing of nonconductive materials. In order to improve the efficiency of machining modern engineering materials, existing electrical discharge machines are constantly being researched and improved or developed. The current machining of non-conductive materials is limited due to the relatively low material removal rate and high surface roughness. A possible technological improvement of electrical discharge machining can be achieved by innovations of existing processes. In this paper, a new approach for machining zirconium oxide is presented. It combines electrical discharge machining with assisting electrode and powder-mixed dielectric. The assisting electrode is used to enable electrical discharge machining of nonconductive material, while the powder-mixed dielectric is used to increase the material removal rate, reduce surface roughness, and decrease relative tool wear. The response surface method was used to generate classical mathematical models, analyzing the output performances of surface roughness, material removal rate and relative tool wear. Verification of the obtained models was performed based on a set of new experimental data. By combining these latest techniques, positive effects on machining performances are obtained. It was found that the surface roughness was reduced by 18%, the metal removal rate was increased by about 12% and the relative tool wear was reduced by up to 6% compared to electrical discharge machining with supported electrode without powder.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


Author(s):  
Murahari Kolli ◽  
Adepu Kumar

Surfactant and graphite powder–assisted electrical discharge machining was proposed and experiments were performed on titanium alloy in this investigation. Analysis was carried out to observe changes in dielectric fluid behaviour, material removal rate, surface roughness, recast layer thickness, surface topography and energy-dispersive X-ray spectroscopy. It was found out that the addition of surfactant to dielectric fluid (electrical discharge machining oil + graphite powder) improved the material removal rate and surface roughness. It was noticed to have reduced the recast layer thickness and agglomeration of graphite and sediment particles. Biface material migrations between the electrode and the workpiece surface were identified, and migration behaviour was powerfully inhibited by the mixing of surfactant. Surfactant added into dielectric fluid played an important role in the discharge gap, which increased the conductivity, and suspended debris particles in dielectric fluid reduced the abnormal discharge conditions of the machine and improved the overall machining efficiency.


2019 ◽  
Vol 973 ◽  
pp. 157-160
Author(s):  
Stanislav A. Mozgov ◽  
Yuriy A. Morgunov ◽  
Boris P. Saushkin

This study investigates the possibility of electrochemical removal of the defective layer formed on the surface of the product after its electrical discharge machining. A set of experiments was conducted in different electrolytes based on aqueous and aqueous-organic solvents. The experiments were to trace the influence of such settings of electrochemical machining as current density, electrolyte pumping speed, electrolyte temperature, and an electrode gap upon both the dynamics of metal removal and surface quality. Morphology of the obtained surface was examined by an Olympus BX-51Microscope. The dynamics of removing material (stock) from the work piece was inspected. Appropriate adjustments were made to the machining parameters during the machining of 65G steels, and a preferred composition was selected for the working medium. A sufficient design for production tools was proposed. Pitting corrosion was discovered on the surface of the samples in all studied modes of electrolysis. It was observed that switching from aqueous electrolyte to aqueous-organic electrolyte gave lower material removal rate and longer machining time accordingly. At the same time, a reduction in surface roughness was visualized, together with smaller pits and lower density of their distribution. The obtained results may be applied in operation design for electrochemical machining of steels with relatively high carbon contents.


Wire Electrical Discharge Machining (WEPSPDM) is utilizedin industries to manufacture components of conductive strong metal with complicated shape, greater tolerance and precision. A review of the literature exposes that most of the research work has been intended for towards the optimization of WEDM operation and modeling of the process. Conventional wire electrode has been developed to a brass wire from a copper wire and finally to zinc coated wire on the brass, steel or copper wire core, by which more advanced WEDM, is realized in terms of better machining speed and accuracy. To examine the parameters likePeak Current (Ip ), Time of Pulse ON (Ton), Time of Pulse OFF (Toff), etc. by the optimization of WEDM operation and modeling of the process during micro slit machining. Analyzed the results and optimize the process parameter conditions for maximum MRR (g/min), and surface roughness based on Taguchi’s Methodology. The ANOVA analysis indicates the significant factors for maximization of MRR, improvement of Surface Roughness and regression analysis. By the research work, it has been concluded that the MRR reduces with raise in Time of Pulse OFF (Toff) and Set Voltage of spark gap (SV) besides Material Removal Rate (MRR) increases with escalating in Time of Pulse ON (Ton) and PC (IP).


2009 ◽  
Vol 83-86 ◽  
pp. 756-763 ◽  
Author(s):  
P.S. Satsangi ◽  
K.D. Chattopadhyay

The use of thermo-electric source of energy, as in electrical discharge machining (EDM), has greatly helped in machining all types of electrically conductive materials being used in different industrial applications. The present work investigates the different machining characteristics during electrical discharge machining on EN-8 steel with a rotary copper electrode. The effects of three independent machining parameters viz. peak current, pulse on time and rotational speed of tool electrode are chosen as variables for evaluating the output parameters such as metal removal rate, surface finish of work piece. The research focuses on developing empirical models for prediction of metal removal rate and surface finish during rotary electrical discharge machining process with the help of input parameters. The models are developed using linear regression analysis by applying logarithmic data transformation of non-linear equation. Analysis of results using partial and multiple correlation analysis reveals that electrical parameters have more significant effect than the non-electrical parameters on the machining characteristics during electrical discharge machining by a rotary electrode. Furthermore, when high MRR is criterion, high peak current and low RPM with low pulse duration produces better output; whereas, and when smooth surface finish is criterion, low peak current and low RPM with high pulse duration produces better output. In addition, the predictions based on the above developed models are verified with extra experiments and are found to be in good agreement with the experimental verifications.


2014 ◽  
Vol 984-985 ◽  
pp. 37-41
Author(s):  
N.E. Arun Kumar ◽  
A. Suresh Babu ◽  
V. Muthu Kumar

This paper investigates the relationship of process parameters in wire electrical discharge machining of titanium alloy with brass wire as tool electrode. Wire electrical discharge machining (WEDM) is used to cut conductive metals of any hardness or that difficult to cut with conventional methods. The process performances such as material removal rate (MRR) and surface finish (Ra) were evaluated by giving specific input parameters which practiced to obtain optimal response. The difficulty in machine tool industry is to predict the expected output performance for the desired input variables by the way of conducting more number of experiments for different machining parameters, which leads to the increase in consumption of electric power, material and time. To overcome this phenomenon, parametric investigation was made on WED machining on titanium alloy by using Taguchi’s method.


Sign in / Sign up

Export Citation Format

Share Document