Numerical and Experimental Investigations on Deposition of Stainless Steel in Wire Arc Additive Manufacturing

Author(s):  
Ashish Kumar ◽  
Kuntal Maji

This paper presents numerical and experimental investigations on wire arc additive manufacturing for deposition of 430L ferritic stainless steel. Finite element analysis was used to predict temperature distribution for deposition of multiple layers in wire arc additive manufacturing. The transient temperature distribution and predicted by finite element simulation was in good agreement with the experimental results. A wall type structure was fabricated by deposition of multiple layers vertically, and deposited material was characterized by tensile testing and microstructure study. The microstructure of the deposited wall structure was investigated through optical microscopy and scanning electron microscopy (SEM) with EDS. The microstructure of deposited material was changed from fine cellular grains structure to columnar dendrites structure with the formation of secondary arm. It was found that the YS, UTS, and EL of the deposition direction were better than the build direction. The mechanical properties of the WAAM manufactured material was found comparable to that of the wire metal.

2021 ◽  
Vol 3 (1) ◽  
pp. 20
Author(s):  
Marios P. Sotiriou ◽  
John S. Aristeidakis ◽  
Maria-Ioanna T. Tzini ◽  
Ioanna Papadioti ◽  
Gregory N. Haidemenopoulos ◽  
...  

Additive manufacturing of an AISI 316L austenitic stainless steel was studied via an integrated thermomechanical and microstructural modelling approach. A finite element technique was employed to evaluate the temperature evolution due to successive material deposition. Heat transfer simulations provided the temperature field history, required to determine the microstructural evolution. Thermodynamic and kinetic simulations were employed to calculate temporal and spatial distribution of phases and alloying elements upon solidification and subsequent thermal cycling. The ensuing microstructural properties could be provided as an input for a mechanical finite element analysis to calculate, based on local mechanical properties, the residual stresses and distortions.


Author(s):  
Bassel Y. Mohamed ◽  
Mohamed A. Hamdy ◽  
Tamer I. Eid

Although heat exchangers are built according to international codes and proved to be leak tight by hydrotesting at ambient temperature, leak of stainless steel heat exchangers girth flanges at the tubesheet gaskets likely occurs during startup and operation at high temperatures. Accordingly, evaluation of the design to assure leak free operation considering anticipated thermal events is required. WRC 510 bulletin [4] introduces a simplified analytical method to address this issue and provides safe guarding against leakage. This study is performed on solid 300 series stainless stationary tubesheet flanged with girth flanges having the same or different material of construction. A thermal finite element analysis is performed to obtain the transient temperature distribution through a girth flanges and stationary tubesheet assembly of a heat exchanger using SOLIDWORKS® SIMULATION [7]. The model of the flanged joint consists of two girth flanges with a tubesheet and gaskets in between. Thermal time dependent transient analysis of the above model is conducted to compute the temperature distribution in the flanged joint assembly for different time steps. Further, these temperature distributions are used to compute the expansion, deflection and rotation for the flanged joint parts using WRC 510 bulletin [4] equations. The study determines both the permissible heating rates during startup and the temperature limits, for the example studied, which are suitable for using solid 300 series stainless tubesheet for both material types of the girth flanges to have the most leak tight & economical assembly when the minimum design metal temperature allows these materials.


2020 ◽  
Vol 4 (4) ◽  
pp. 115
Author(s):  
João P. M. Pragana ◽  
Stephan Rosenthal ◽  
Ivo M. F. Bragança ◽  
Carlos M. A. Silva ◽  
A. Erman Tekkaya ◽  
...  

The objective of this paper is to present a new hybrid additive manufacturing route for fabricating collector coins with complex, intricate contoured holes. The new manufacturing route combines metal deposition by additive manufacturing with metal cutting and forming, and its application is illustrated with an example consisting of a prototype coin made from stainless steel AISI 316L. Experimentation and finite element analysis of the coin minting operation with the in-house computer program i-form show that the blanks produced by additive manufacturing and metal cutting can withstand the high compressive pressures that are attained during the embossing and impressing of lettering and other reliefs on the coin surfaces. The presentation allows concluding that hybrid additive manufacturing opens the way to the production of innovative collector coins with geometric features that are radically different from those that are currently available in the market.


Sign in / Sign up

Export Citation Format

Share Document