In-Silico Analysis to Identify Potential Inhibitors Against the Protein NSP12 of SARS-CoV-2

Author(s):  
Hima Vyshnavi ◽  
Gayathri S. S. ◽  
Shahanas Naisam ◽  
Suvanish Kumar ◽  
Nidhin Sreekumar

In this pandemic condition, a drug candidate which is effective against COVID-19 is very much desired. This study initiates an in silico analysis to screen small molecules such as phytochemicals, drug metabolites, and natural metabolites against Nsp12 (a catalytic unit for RNA transcription and replication). Molecular interaction analysis of 6M71 was carried out against 2,860 ligands using Schrodinger Glide software. After docking analysis, the top 10 molecules (Glide score) were subjected to MD simulation for validating the stability. It resulted in top 10 compounds with high binding affinities with the target molecule NSP 12. Out of these, top 3 compounds including PSID_08_LIG3 (HMDB0133544), PSID_08_LIG4 (HMDB0132898), and PSID_08_LIG9 (HMDB0128199) show better Glide scores, better H-bond interaction, better MMGBSA value and stability on dynamic simulation after analysis of the results. The suggested ligands can be postulated as effective antiviral drugs against COVID-19. Further in vivo analysis is needed for validating the drug efficacy.

Author(s):  
Shahanas Naisam ◽  
Viji V.S. ◽  
Suvanish Kumar ◽  
Nidhin Sreekumar

In the current outbreak of COVID-19, various studies have been conducted all over the world to develop effective drugs against the virus. Recent studies have shown that hydroxychloroquine, chloroquine (antimalarial drugs), isoflavones, flavonoids, etc. have potent antiviral properties, and few have been proven as effective drugs for the preventive treatment of COVID-19. But their exact action against SARS-CoV-2 is still unknown. The strategy of this study is the virtual screening of quinoline analogues, design new ligand molecules, perform molecular interaction analysis, their MD validation against multi targets (Spike-ACE2, TMPRSS2, and Spike Protein) of SARS-CoV-2, and to suggest the most promising and effective drug molecule. Hydroxychloroquine and chloroquine were considered as the reference molecules in this study. A ligand N-[4-(3-Benzylideneazetidine-1-carbonyl)phenyl]quinoline-8-sulfonamide interacting with TMPRSS2 shows better interaction among the list even after MD validation. Further in-vitro and in-vivo analysis of this study is needed for future validation.


2021 ◽  
pp. 105068
Author(s):  
Devendra Kumar ◽  
Ravi Ranjan Kumar ◽  
Shelly Pathania ◽  
Pankaj Kumar Singh ◽  
Sourav Kalra ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. 102491
Author(s):  
Lipi Lekha Swain ◽  
Chinmoy Mishra ◽  
Siddhant Sekhar Sahoo ◽  
Gangadhar Nayak ◽  
Sukanta Kumar Pradhan ◽  
...  

2015 ◽  
Vol 21 (2) ◽  
pp. 148-159 ◽  
Author(s):  
Matthew T. Wolf ◽  
Yoram Vodovotz ◽  
Stephen Tottey ◽  
Bryan N. Brown ◽  
Stephen F. Badylak

2013 ◽  
Vol 7 (1) ◽  
pp. 24 ◽  
Author(s):  
Flavio Amara ◽  
Riccardo Colombo ◽  
Paolo Cazzaniga ◽  
Dario Pescini ◽  
Attila Csikász-Nagy ◽  
...  

2012 ◽  
Vol 125 (1) ◽  
pp. e1-e1 ◽  
Author(s):  
Y. Setty ◽  
D. Dalfo ◽  
D. Z. Korta ◽  
E. J. A. Hubbard ◽  
H. Kugler

INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (05) ◽  
pp. 21-29
Author(s):  
Natasha N. Aggarwal ◽  
B. C. Revanasiddappa ◽  
Banylla Felicity ◽  
Vijay Kumar ◽  
Hemanth Kumar ◽  
...  

In this present study, a novel series of chalcones (C1-10) were synthesized by reacting 4-nitro acetophenone and various substituted aromatic aldehydes in an alcohol medium. The title compounds, pyrimidine derivatives (PD1-10), were obtained by the cyclization of chalcones (C1-10) with guanidine carbonate in an alcoholic medium. Each of the newly synthesized compounds was structurally assigned in accordance with FT-IR, 1 H-NMR and mass spectral data. All the synthesized compounds were subjected to in silico analysis among which, some of the synthesized compounds were chosen and evaluated for in vivo anticonvulsant study by employing PTZ-induced seizure and MES seizure models. Compounds PD2 and PD7 demonstrated significant anticonvulsant activity when compared to the standard.


2003 ◽  
Vol 71 (10) ◽  
pp. 6083-6087 ◽  
Author(s):  
Ashwani Kumar ◽  
Mridula Bose ◽  
Vani Brahmachari

ABSTRACT The sequencing of the complete genome of M. tuberculosis H37Rv has resulted in the recognition of four mce operons in its genome by in silico analysis. In an attempt to understand the significance of the redundancy of mce operons, we analyzed the expression profile of mce operons after different periods of growth in culture as well as during in vivo infection. Our results strongly suggest that mce1 is expressed as a polycistronic message. In culture from day 8 to day 12, expression of only mce1 was observed, but as the cultures progress towards stationary phase the expression profile of mce operons was altered; the transcripts of the mce1 operon were barely detected while those of the mce4 operon were prominent. In an analysis of the expression of mce operons in tubercle material collected from infected animal tissues, we detected the expression of mce1, -3 and -4. Our results imply that mce operons other than mce1 are also expressed during infection and that it is necessary to examine their role in pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document