scholarly journals In silico analysis of potential inhibitors of Ca2+activated K+channel blocker, Charybdotoxin-C from Leiurus quinquestriatus hebraeus through molecular docking and dynamics studies

2015 ◽  
Vol 47 (3) ◽  
pp. 280 ◽  
Author(s):  
RBarani Kumar ◽  
BShanmuga Priya ◽  
MXavier Suresh
Author(s):  
Hima Vyshnavi ◽  
Gayathri S. S. ◽  
Shahanas Naisam ◽  
Suvanish Kumar ◽  
Nidhin Sreekumar

In this pandemic condition, a drug candidate which is effective against COVID-19 is very much desired. This study initiates an in silico analysis to screen small molecules such as phytochemicals, drug metabolites, and natural metabolites against Nsp12 (a catalytic unit for RNA transcription and replication). Molecular interaction analysis of 6M71 was carried out against 2,860 ligands using Schrodinger Glide software. After docking analysis, the top 10 molecules (Glide score) were subjected to MD simulation for validating the stability. It resulted in top 10 compounds with high binding affinities with the target molecule NSP 12. Out of these, top 3 compounds including PSID_08_LIG3 (HMDB0133544), PSID_08_LIG4 (HMDB0132898), and PSID_08_LIG9 (HMDB0128199) show better Glide scores, better H-bond interaction, better MMGBSA value and stability on dynamic simulation after analysis of the results. The suggested ligands can be postulated as effective antiviral drugs against COVID-19. Further in vivo analysis is needed for validating the drug efficacy.


Author(s):  
Aldina Amalia Nur Shadrina ◽  
Yetty Herdiyati ◽  
Ika Wiani ◽  
Mieke Hemiawati Satari ◽  
Dikdik Kurnia

Background: Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products like Ocimum basilicum will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development. Objective: The research objective is to isolate the secondary metabolite of O. basilicum extract that has activity against S. sanguinis through in vitro and in silico analysis. Methods: n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed used PyRx 0.8 program. Results: Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 μg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase. Conclusion: Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.


RSC Advances ◽  
2021 ◽  
Vol 11 (61) ◽  
pp. 38616-38631
Author(s):  
Samia A. Elseginy ◽  
Manal M. Anwar

The emergent outbreak caused by severe acute respiratory syndrome coronavirus 2 continues spreading and causing huge social and economic disruption.


2021 ◽  
Vol 11 (3) ◽  
pp. 79-85
Author(s):  
Ashish Kumar ◽  
Neeraj Kumar ◽  
Balwan Singh

Laccifer lacca has generally been used as pigmenting, coloring agent and dying in chemical industry. Although, it has wide range of industrial applications, but inappropriately, due to lesser availability of data, it has been ignored. Keeping in mind, the wide application of Laccifer lacca, we tried to report the in-silico anti-cancer effects. The experimental techniques used to determine the structure was X-RAY diffraction. The reported resolution of this entry is 2.80 Å. Percentile scores (ranging between 0-100) for global authentication metrics of the record. In silico have a good pool to explore various parameters in molecular docking. We have performed in silico analysis of the active components of Laccifer lacca against the cervical, breast and lung cancer proteins and also found that lac extract enhances the production of anti-inflammatory markers and the increase is significant when compared to the standard vinblastine. It has been demonstrated by Lala and colleagues that a short lived molecule nitric oxide can result in the progression of human tumours. Therefore, the prominent antioxidant activity of phytochemical that can act as inhibitors of nitric oxide production can act as anticancer therapeutics. Both methanolic and aqueous extract shows significant anticancer effect on the hela, MCF-7 & A549 cells suggesting them as potential anticancer therapeutics for future. Keywords: Laccifer lacca, In-vitro & In-silico analysis, Carcinogenesis, Anti-inflammatory, Molecular Docking.


Sign in / Sign up

Export Citation Format

Share Document