scholarly journals Analysis of Expression Profile of Mammalian Cell Entry (mce) Operons of Mycobacterium tuberculosis

2003 ◽  
Vol 71 (10) ◽  
pp. 6083-6087 ◽  
Author(s):  
Ashwani Kumar ◽  
Mridula Bose ◽  
Vani Brahmachari

ABSTRACT The sequencing of the complete genome of M. tuberculosis H37Rv has resulted in the recognition of four mce operons in its genome by in silico analysis. In an attempt to understand the significance of the redundancy of mce operons, we analyzed the expression profile of mce operons after different periods of growth in culture as well as during in vivo infection. Our results strongly suggest that mce1 is expressed as a polycistronic message. In culture from day 8 to day 12, expression of only mce1 was observed, but as the cultures progress towards stationary phase the expression profile of mce operons was altered; the transcripts of the mce1 operon were barely detected while those of the mce4 operon were prominent. In an analysis of the expression of mce operons in tubercle material collected from infected animal tissues, we detected the expression of mce1, -3 and -4. Our results imply that mce operons other than mce1 are also expressed during infection and that it is necessary to examine their role in pathogenesis.

2021 ◽  
pp. 105068
Author(s):  
Devendra Kumar ◽  
Ravi Ranjan Kumar ◽  
Shelly Pathania ◽  
Pankaj Kumar Singh ◽  
Sourav Kalra ◽  
...  

Author(s):  
Hima Vyshnavi ◽  
Gayathri S. S. ◽  
Shahanas Naisam ◽  
Suvanish Kumar ◽  
Nidhin Sreekumar

In this pandemic condition, a drug candidate which is effective against COVID-19 is very much desired. This study initiates an in silico analysis to screen small molecules such as phytochemicals, drug metabolites, and natural metabolites against Nsp12 (a catalytic unit for RNA transcription and replication). Molecular interaction analysis of 6M71 was carried out against 2,860 ligands using Schrodinger Glide software. After docking analysis, the top 10 molecules (Glide score) were subjected to MD simulation for validating the stability. It resulted in top 10 compounds with high binding affinities with the target molecule NSP 12. Out of these, top 3 compounds including PSID_08_LIG3 (HMDB0133544), PSID_08_LIG4 (HMDB0132898), and PSID_08_LIG9 (HMDB0128199) show better Glide scores, better H-bond interaction, better MMGBSA value and stability on dynamic simulation after analysis of the results. The suggested ligands can be postulated as effective antiviral drugs against COVID-19. Further in vivo analysis is needed for validating the drug efficacy.


2020 ◽  
Vol 88 ◽  
pp. 102491
Author(s):  
Lipi Lekha Swain ◽  
Chinmoy Mishra ◽  
Siddhant Sekhar Sahoo ◽  
Gangadhar Nayak ◽  
Sukanta Kumar Pradhan ◽  
...  

2020 ◽  
Vol 10 (10) ◽  
pp. 666
Author(s):  
Debasmita Mukhopadhyay ◽  
Bashair M. Mussa

Background: Neuroinvasion of severe acute respiratory syndrome coronavirus (SARS-CoV) is well documented and, given the similarities between this virus and SARS-CoV-2, it seems that the neurological impairment that is associated with coronavirus disease 2019 (COVID-19) is due to SARS-CoV-2 neuroinvasion. Hypothalamic circuits are exposed to the entry of the virus via the olfactory bulb and interact centrally with crucial respiratory nuclei. Hypothalamic microRNAs are considered as potential biomarkers and modulators for various diseases and future therapeutic targets. The present study aims to investigate the microRNAs that regulate the expression of hypothalamic angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential elements for SARS-CoV-2 cell entry. Methods: To determine potential hypothalamic miRNAs that can directly bind to ACE2 and TMPRSS2, multiple target bioinformatics prediction algorithms were used, including miRBase, Target scan, and miRWalk2.029. Results: Our in silico analysis has revealed that, although there are over 5000 hypothalamic miRNAs, around 31 miRNAs and 29 miRNAs have shown binding sites and strong binding capacity against ACE2 and TMPRSS2, respectively. Conclusion: These novel potential hypothalamic miRNAs can be used to identify new therapeutic targets to treat neurological symptoms in COVID-19 patients via regulation of ACE2 and TMPRSS2 expression.


2015 ◽  
Vol 21 (2) ◽  
pp. 148-159 ◽  
Author(s):  
Matthew T. Wolf ◽  
Yoram Vodovotz ◽  
Stephen Tottey ◽  
Bryan N. Brown ◽  
Stephen F. Badylak

2013 ◽  
Vol 7 (1) ◽  
pp. 24 ◽  
Author(s):  
Flavio Amara ◽  
Riccardo Colombo ◽  
Paolo Cazzaniga ◽  
Dario Pescini ◽  
Attila Csikász-Nagy ◽  
...  

2012 ◽  
Vol 125 (1) ◽  
pp. e1-e1 ◽  
Author(s):  
Y. Setty ◽  
D. Dalfo ◽  
D. Z. Korta ◽  
E. J. A. Hubbard ◽  
H. Kugler

Author(s):  
Md Emran ◽  
Md. Mofijur Rahman ◽  
Afroza Khanam Anika ◽  
Sultana Hossain Nasrin ◽  
Abu Tayab Moin

Tuberculosis (TB) is a contagious disease, caused by Mycobacterium tuberculosis (MTB) that has infected and killed a lot of people in the past. At present treatments against TB are available at a very low cost. Since these chemical drugs have many adverse effects on health, more attention is now given on the plant-derived phytochemicals as potential agents to fight against TB. In this study, 5 phytochemicals, 4-hydroxybenzaldehyde, benzoic acid, bergapten, psoralen, and p-hydroxybenzoic acid, are selected to test their potentiality, safety, and efficacy against two potential targets, the MTB RNA polymerase and enoyl-acyl carrier protein (ACP) reductase, the InhA protein, using various tools of in silico biology. The molecular docking experiment, drug-likeness property test, ADME/T-test, P450 SOM prediction, pharmacophore mapping, and modeling, solubility testing, DFT calculations, and PASS prediction study had confirmed that all the molecules had the good potentiality to inhibit the two targets. However, two agents, 4-hydroxybenzaldehyde and bergapten were considered as the best agents among the five selected agents and they also showed far better results than the two currently used drugs, that function in these pathways, rifampicin (MTB RNA polymerase) and isoniazid (InhA protein). These two agents can be used effectively to treat tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document