Investigation of indole functionalized pyrazoles and oxadiazoles as anti-inflammatory agents: synthesis, in-vivo, in-vitro and in-silico analysis

2021 ◽  
pp. 105068
Author(s):  
Devendra Kumar ◽  
Ravi Ranjan Kumar ◽  
Shelly Pathania ◽  
Pankaj Kumar Singh ◽  
Sourav Kalra ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7397
Author(s):  
Md Mazedul Haq ◽  
Md Arifur Rahman Chowdhury ◽  
Hilal Tayara ◽  
Ibrahim Abdelbaky ◽  
Md Shariful Islam ◽  
...  

This study aims to investigate the potential analgesic properties of the crude extract of Monochoria hastata (MH) leaves using in vivo experiments and in silico analysis. The extract, in a dose-dependent manner, exhibited a moderate analgesic property (~54% pain inhibition in acetic acid-induced writhing test), which is significant (** p < 0.001) as compared to the control group. The complex inflammatory mechanism involves diverse pathways and they are inter-connected. Therefore, multiple inflammatory modulator proteins were selected as the target for in silico analysis. Computational analysis suggests that all the selected targets had different degrees of interaction with the phytochemicals from the extract. Rutin (RU), protocatechuic acid (PA), vanillic acid (VA), and ferulic acid (FA) could regulate multiple targets with a robust efficiency. None of the compounds showed selectivity to Cyclooxygenase-2 (COX-2). However, regulation of COX and lipoxygenase (LOX) cascade by PA can reduce non-steroidal analgesic drugs (NSAIDs)-related side effects, including asthma. RU showed robust regulation of cytokine-mediated pathways like RAS/MAPK and PI3K/NF-kB by inhibition of EGFR and IKBα (IKK), which may prevent multi-organ failure due to cytokine storm in several microbial infections, for example, SARS-CoV-2. Further investigation, using in vivo and in vitro experiments, can be conducted to develop multi-target anti-inflammatory drugs using the isolated compounds from the extract.


2015 ◽  
Vol 21 (2) ◽  
pp. 148-159 ◽  
Author(s):  
Matthew T. Wolf ◽  
Yoram Vodovotz ◽  
Stephen Tottey ◽  
Bryan N. Brown ◽  
Stephen F. Badylak

2021 ◽  
Vol 11 (3) ◽  
pp. 79-85
Author(s):  
Ashish Kumar ◽  
Neeraj Kumar ◽  
Balwan Singh

Laccifer lacca has generally been used as pigmenting, coloring agent and dying in chemical industry. Although, it has wide range of industrial applications, but inappropriately, due to lesser availability of data, it has been ignored. Keeping in mind, the wide application of Laccifer lacca, we tried to report the in-silico anti-cancer effects. The experimental techniques used to determine the structure was X-RAY diffraction. The reported resolution of this entry is 2.80 Å. Percentile scores (ranging between 0-100) for global authentication metrics of the record. In silico have a good pool to explore various parameters in molecular docking. We have performed in silico analysis of the active components of Laccifer lacca against the cervical, breast and lung cancer proteins and also found that lac extract enhances the production of anti-inflammatory markers and the increase is significant when compared to the standard vinblastine. It has been demonstrated by Lala and colleagues that a short lived molecule nitric oxide can result in the progression of human tumours. Therefore, the prominent antioxidant activity of phytochemical that can act as inhibitors of nitric oxide production can act as anticancer therapeutics. Both methanolic and aqueous extract shows significant anticancer effect on the hela, MCF-7 & A549 cells suggesting them as potential anticancer therapeutics for future. Keywords: Laccifer lacca, In-vitro & In-silico analysis, Carcinogenesis, Anti-inflammatory, Molecular Docking.


2014 ◽  
Vol 21 (20) ◽  
pp. 2322-2330 ◽  
Author(s):  
L.Y. Rizzo ◽  
G.B. Longato ◽  
A.LT.G. Ruiz ◽  
S.V. Tinti ◽  
A. Possenti ◽  
...  

Methods ◽  
2011 ◽  
Vol 53 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Leonard Chávez ◽  
Steven Kauder ◽  
Eric Verdin

Biomedicine ◽  
2021 ◽  
Vol 40 (4) ◽  
pp. 474-481
Author(s):  
Virupaksha A. Bastikar ◽  
Alpana Bastikar ◽  
Pramodkumar P. Gupta ◽  
Sandeep R. Pai ◽  
Santosh S. Chhajed

Introduction and Aim: Tuberculosis (TB) is a global health concern, claiming two million lives every year. Although an oldest known human infectious disease, researcher is falling short of giving out an effective and reliable vaccine or therapy. The current antimycobacterial drugs include Isoniazid, Ethambutol, Rifampicin and Pyrazinemamide available in market, but most of these are known to have certain adverse effects. Hence there is an increase in demand for natural products with anti-tuberculosis activity with no or limited side effects. Indian traditional systems of medicine have a plethora of promising plants for treatment of tuberculosis, of which Bergenin is the most well established and extensively used compound. The main aim of this research was to investigate the role of Bergenin as an anti-tuberculosis agent with the help of in-silico analysis and protein interaction studies. Materials and Methods: In the present study 04 known 3-dimensional crystallized anti-tubercular drug target is considered and retrieved from PDB. Drug Isoniazid, Ethambutol, Rifampicin, Pyrazineamide and phytochemical Bergenin were retrieved, sketched and geometrically optimized. Molecular docking is carried to understand the binding mode and its core interactions. ADMET properties were calculated in assessment of the toxicity. Protein-protein interactions and enrichment analysis is carried out to understand the biological process involved with rpsA protein. Results: In the present study other than Rifampicin, Bergenin reported with better binding energy and similar pharmacophoric interaction pattern as compared to all the 04 indigenous inhibitors. The PPI network and enrichment analysis predicts the plausible biological process involved with rpsA protein and can be further targeted in treatment of tuberculosis. Conclusion: The results showed that Bergenin was better than and competent with the existing drugs and can be used as an anti-tuberculosis agent if studied in-vitro and in-vivo for its activity.


2020 ◽  
Vol 17 (2) ◽  
pp. 125-132
Author(s):  
Marjanu Hikmah Elias ◽  
Noraziah Nordin ◽  
Nazefah Abdul Hamid

Background: Chronic Myeloid Leukaemia (CML) is associated with the BCRABL1 gene, which plays a central role in the pathogenesis of CML. Thus, it is crucial to suppress the expression of BCR-ABL1 in the treatment of CML. MicroRNA is known to be a gene expression regulator and is thus a good candidate for molecularly targeted therapy for CML. Objective: This study aims to identify the microRNAs from edible plants targeting the 3’ Untranslated Region (3’UTR) of BCR-ABL1. Methods: In this in silico analysis, the sequence of 3’UTR of BCR-ABL1 was obtained from Ensembl Genome Browser. PsRNATarget Analysis Server and MicroRNA Target Prediction (miRTar) Server were used to identify miRNAs that have binding conformity with 3’UTR of BCR-ABL1. The MiRBase database was used to validate the species of plants expressing the miRNAs. The RNAfold web server and RNA COMPOSER were used for secondary and tertiary structure prediction, respectively. Results: In silico analyses revealed that cpa-miR8154, csi-miR3952, gma-miR4414-5p, mdm-miR482c, osa-miR1858a and osa-miR1858b show binding conformity with strong molecular interaction towards 3’UTR region of BCR-ABL1. However, only cpa-miR- 8154, osa-miR-1858a and osa-miR-1858b showed good target site accessibility. Conclusion: It is predicted that these microRNAs post-transcriptionally inhibit the BCRABL1 gene and thus could be a potential molecular targeted therapy for CML. However, further studies involving in vitro, in vivo and functional analyses need to be carried out to determine the ability of these miRNAs to form the basis for targeted therapy for CML.


2019 ◽  
Vol 13 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Vishal Ahuja ◽  
Aashima Sharma ◽  
Ranju Kumari Rathour ◽  
Vaishali Sharma ◽  
Nidhi Rana ◽  
...  

Background: Lignocellulosic residues generated by various anthropogenic activities can be a potential raw material for many commercial products such as biofuels, organic acids and nutraceuticals including xylitol. Xylitol is a low-calorie nutritive sweetener for diabetic patients. Microbial production of xylitol can be helpful in overcoming the drawbacks of traditional chemical production process and lowring cost of production. Objective: Designing efficient production process needs the characterization of required enzyme/s. Hence current work was focused on in-vitro and in-silico characterization of xylose reductase from Emericella nidulans. Methods: Xylose reductase from one of the hyper-producer isolates, Emericella nidulans Xlt-11 was used for in-vitro characterization. For in-silico characterization, XR sequence (Accession No: Q5BGA7) was used. Results: Xylose reductase from various microorganisms has been studied but the quest for better enzymes, their stability at higher temperature and pH still continues. Xylose reductase from Emericella nidulans Xlt-11 was found NADH dependent and utilizes xylose as its sole substrate for xylitol production. In comparison to whole cells, enzyme exhibited higher enzyme activity at lower cofactor concentration and could tolerate higher substrate concentration. Thermal deactivation profile showed that whole cell catalysts were more stable than enzyme at higher temperature. In-silico analysis of XR sequence from Emericella nidulans (Accession No: Q5BGA7) suggested that the structure was dominated by random coiling. Enzyme sequences have conserved active site with net negative charge and PI value in acidic pH range. Conclusion: Current investigation supported the enzyme’s specific application i.e. bioconversion of xylose to xylitol due to its higher selectivity. In-silico analysis may provide significant structural and physiological information for modifications and improved stability.


2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


Sign in / Sign up

Export Citation Format

Share Document