Reducing the Risk of Wrong Choice in Group Decision Making by Optimal Weight Allocating to Decision Makers

2018 ◽  
Vol 7 (2) ◽  
pp. 1-23 ◽  
Author(s):  
Mohammad Azadfallah

How to determine a weight for decision makers (DMs) is one of the key issues in Multiple Attribute Group Decision Making (MAGDM). While, some experts (or DMs) clearly wiser and more powerful in such matters than others, it has often seen that experts play their roles with same weights of importance. Meanwhile, it will lead to the wrong choice (or decision risk) and loss of values. Since, in the absence of any other standards about how to reduce this potential risk for bias, in this article, based on judgment matrices and error analysis, the author presents two new algorithm taken from crisp (the correlation-based approach) and interval (the ideal-based approach) TOPSIS method, respectively. Finally, two numerical examples are given to demonstrate the feasibility of the developed method.

2021 ◽  
pp. 1-11
Author(s):  
Huiyuan Zhang ◽  
Guiwu Wei ◽  
Xudong Chen

The green supplier selection is one of the popular multiple attribute group decision making (MAGDM) problems. The spherical fuzzy sets (SFSs) can fully express the complexity and fuzziness of evaluation information for green supplier selection. Furthermore, the classic MABAC (multi-attributive border approximation area comparison) method based on the cumulative prospect theory (CPT-MABAC) is designed, which is an optional method in reflecting the psychological perceptions of decision makers (DMs). Therefore, in this article, we propose a spherical fuzzy CPT-MABAC (SF-CPT-MABAC) method for MAGDM issues. Meanwhile, considering the different preferences of DMs to attribute sets, we obtain the objective weights of attributes through entropy method. Focusing on the current popular problems, this paper applies the proposed method for green supplier selection and proves for green supplier selection based on SF-CPT-MABAC method. Finally, by comparing existing methods, the effectiveness of the proposed method is certified.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 472 ◽  
Author(s):  
Yuan Xu ◽  
Xiaopu Shang ◽  
Jun Wang ◽  
Wen Wu ◽  
Huiqun Huang

The q-rung orthopair fuzzy sets (q-ROFSs), originated by Yager, are good tools to describe fuzziness in human cognitive processes. The basic elements of q-ROFSs are q-rung orthopair fuzzy numbers (q-ROFNs), which are constructed by membership and nonmembership degrees. As realistic decision-making is very complicated, decision makers (DMs) may be hesitant among several values when determining membership and nonmembership degrees. By incorporating dual hesitant fuzzy sets (DHFSs) into q-ROFSs, we propose a new technique to deal with uncertainty, called q-rung dual hesitant fuzzy sets (q-RDHFSs). Subsequently, we propose a family of q-rung dual hesitant fuzzy Heronian mean operators for q-RDHFSs. Further, the newly developed aggregation operators are utilized in multiple attribute group decision-making (MAGDM). We used the proposed method to solve a most suitable supplier selection problem to demonstrate its effectiveness and usefulness. The merits and advantages of the proposed method are highlighted via comparison with existing MAGDM methods. The main contribution of this paper is that a new method for MAGDM is proposed.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jian Guo

Hybrid multiple attribute group decision making involves ranking and selecting competing courses of action available using attributes to evaluate the alternatives. The decision makers assessment information can be expressed in the form of real number, interval-valued number, linguistic variable, and the intuitionistic fuzzy number. All these evaluation information can be transformed to the form of intuitionistic fuzzy numbers. A combined GRA with intuitionistic fuzzy group decision-making approach is proposed. Firstly, the hybrid decision matrix is standardized and then transformed into an intuitionistic fuzzy decision matrix. Then, intuitionistic fuzzy averaging operator is utilized to aggregate opinions of decision makers. Intuitionistic fuzzy entropy is utilized to obtain the entropy weights of the criteria, respectively. After intuitionistic fuzzy positive ideal solution and intuitionistic fuzzy negative ideal solution are calculated, the grey relative relational degree of alternatives is obtained and alternatives are ranked. In the end, a numerical example illustrates the validity and applicability of the proposed method.


2018 ◽  
Vol 29 (1) ◽  
pp. 393-408 ◽  
Author(s):  
Khaista Rahman ◽  
Saleem Abdullah ◽  
Muhammad Sajjad Ali Khan

Abstract In this paper, we introduce the notion of Einstein aggregation operators, such as the interval-valued Pythagorean fuzzy Einstein weighted averaging aggregation operator and the interval-valued Pythagorean fuzzy Einstein ordered weighted averaging aggregation operator. We also discuss some desirable properties, such as idempotency, boundedness, commutativity, and monotonicity. The main advantage of using the proposed operators is that these operators give a more complete view of the problem to the decision makers. These operators provide more accurate and precise results as compared the existing method. Finally, we apply these operators to deal with multiple-attribute group decision making under interval-valued Pythagorean fuzzy information. For this, we construct an algorithm for multiple-attribute group decision making. Lastly, we also construct a numerical example for multiple-attribute group decision making.


Author(s):  
Hu-Chen Liu ◽  
Qing-Lian Lin ◽  
Jing Wu

Consider the various types of uncertain preference information provided by the decision makers and the importance of determining the associated weights for the aggregation operator, the multiple attribute group decision making (MAGDM) methods based on some dependent interval 2-tuple linguistic aggregation operators are proposed in this paper. Firstly some operational laws and possibility degree of interval 2-tuple linguistic variables are introduced. Then, we develop a dependent interval 2-tuple weighted averaging (DITWA) operator and a dependent interval 2-tuple weighted geometric (DITWG) operator, in which the associated weights only depend on the aggregated interval 2-tuple arguments and can relieve the influence of unfair arguments on the aggregated results by assigning low weights to them. Based on the DITWA and the DITWG operators, some approaches for multiple attribute group decision making with interval 2-tuple linguistic information are proposed. Finally, an illustrative example is given to demonstrate the practicality and effectiveness of the proposed approaches.


2013 ◽  
Vol 19 (3) ◽  
pp. 377-396 ◽  
Author(s):  
Guiwu Wei ◽  
Xiaofei Zhao ◽  
Hongjun Wang ◽  
Rui Lin

The article investigates the multiple attribute group decision making (MAGDM) problems in which the attribute values take the form of triangular fuzzy information. Motivated by the ideal of power aggregation, in this paper some power aggregation operators for aggregating triangular fuzzy information are developed and then applied in order to develop some models for multiple attribute group decision making with triangular fuzzy information. Finally, some illustrative examples are given to verify the developed approach and to demonstrate its practicality and effectiveness.


2014 ◽  
Vol 13 (03) ◽  
pp. 497-519 ◽  
Author(s):  
Meimei Xia ◽  
Zeshui Xu

To determine the weight vector and to aggregate the individual opinions are necessary steps in the classical methods for multi-criteria group decision-making problems in which the weight vectors of the decision makers and the criteria are incompletely known. In this paper, we propose a simple but efficient approach which can avoid these steps by establishing some optimal models. To get the optimal group decision matrix, we first propose two kinds of models among which the former focuses on minimizing the deviations between individual decision matrix and the ideal group one, while the latter aims at minimizing the deviations between the estimated group opinion and the ideal group one. To get the overall performances of alternatives, another two types of models are further established, one of which is to minimize the distance between the evaluation value under each criterion and the ideal overall value for each alternative, and the other is to minimize the distance between the estimated overall value and the ideal overall one. The proposed models can be used to deal with group decision-making under intuitionistic fuzzy, interval-valued fuzzy or other fuzzy environments, and can also provide the decision makers more choices by containing the parameter which can be assigned different values according to different actual situations. Several examples illustrate the practicability of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document