A Comprehensive Study on Architecture of Neural Networks and Its Prospects in Cognitive Computing

2020 ◽  
Vol 11 (2) ◽  
pp. 37-55
Author(s):  
Sushree Bibhuprada B. Priyadarshini

This paper proffers an overview of neural network, coupled with early neural network architecture, learning methods, and applications. Basically, neural networks are simplified models of biological nervous systems and that's why they have drawn crucial attention of research community in the domain of artificial intelligence. Basically, such networks are highly interconnected networks possessing a huge number of processing elements known as neurons. Such networks learn by examples and exhibit the mapping capabilities, generalization, fault resilience conjointly with escalated rate of information processing. In the current paper, various types of learning methods employed in case of neural networks are discussed. Subsequently, the paper details the deep neural network (DNN), its key concepts, optimization strategies, activation functions used. Afterwards, logistic regression and conventional optimization approaches are described in the paper. Finally, various applications of neural networks in various domains are included in the paper before concluding it.

2020 ◽  
Vol 2020 (10) ◽  
pp. 54-62
Author(s):  
Oleksii VASYLIEV ◽  

The problem of applying neural networks to calculate ratings used in banking in the decision-making process on granting or not granting loans to borrowers is considered. The task is to determine the rating function of the borrower based on a set of statistical data on the effectiveness of loans provided by the bank. When constructing a regression model to calculate the rating function, it is necessary to know its general form. If so, the task is to calculate the parameters that are included in the expression for the rating function. In contrast to this approach, in the case of using neural networks, there is no need to specify the general form for the rating function. Instead, certain neural network architecture is chosen and parameters are calculated for it on the basis of statistical data. Importantly, the same neural network architecture can be used to process different sets of statistical data. The disadvantages of using neural networks include the need to calculate a large number of parameters. There is also no universal algorithm that would determine the optimal neural network architecture. As an example of the use of neural networks to determine the borrower's rating, a model system is considered, in which the borrower's rating is determined by a known non-analytical rating function. A neural network with two inner layers, which contain, respectively, three and two neurons and have a sigmoid activation function, is used for modeling. It is shown that the use of the neural network allows restoring the borrower's rating function with quite acceptable accuracy.


2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


2020 ◽  
Author(s):  
Douglas Meneghetti ◽  
Reinaldo Bianchi

This work proposes a neural network architecture that learns policies for multiple agent classes in a heterogeneous multi-agent reinforcement setting. The proposed network uses directed labeled graph representations for states, encodes feature vectors of different sizes for different entity classes, uses relational graph convolution layers to model different communication channels between entity types and learns distinct policies for different agent classes, sharing parameters wherever possible. Results have shown that specializing the communication channels between entity classes is a promising step to achieve higher performance in environments composed of heterogeneous entities.


2020 ◽  
Vol 226 ◽  
pp. 02020
Author(s):  
Alexey V. Stadnik ◽  
Pavel S. Sazhin ◽  
Slavomir Hnatic

The performance of neural networks is one of the most important topics in the field of computer vision. In this work, we analyze the speed of object detection using the well-known YOLOv3 neural network architecture in different frameworks under different hardware requirements. We obtain results, which allow us to formulate preliminary qualitative conclusions about the feasibility of various hardware scenarios to solve tasks in real-time environments.


2021 ◽  
Vol 7 (9) ◽  
pp. 173
Author(s):  
Eduardo Paluzo-Hidalgo ◽  
Rocio Gonzalez-Diaz ◽  
Miguel A. Gutiérrez-Naranjo ◽  
Jónathan Heras

Simplicial-map neural networks are a recent neural network architecture induced by simplicial maps defined between simplicial complexes. It has been proved that simplicial-map neural networks are universal approximators and that they can be refined to be robust to adversarial attacks. In this paper, the refinement toward robustness is optimized by reducing the number of simplices (i.e., nodes) needed. We have shown experimentally that such a refined neural network is equivalent to the original network as a classification tool but requires much less storage.


2018 ◽  
Author(s):  
Sutedi Sutedi

Diabetes Melitus (DM) is dangerous disease that affect many of the variouslayer of work society. This disease is not easy to accurately recognized by thegeneral society. So we need to develop a system that can identify accurately. Systemis built using neural networks with backpropagation methods and the functionactivation sigmoid. Neural network architecture using 8 input layer, 2 output layerand 5 hidden layer. The results show that this methods succesfully clasifies datadiabetics and non diabetics with near 100% accuracy rate.


2020 ◽  
Vol 196 ◽  
pp. 02007
Author(s):  
Vladimir Mochalov ◽  
Anastasia Mochalova

In this paper, the previously obtained results on recognition of ionograms using deep learning are expanded to predict the parameters of the ionosphere. After the ionospheric parameters have been identified on the ionogram using deep learning in real time, we can predict the parameters for some time ahead on the basis of the new data obtained Examples of predicting the ionosphere parameters using an artificial recurrent neural network architecture long short-term memory are given. The place of the block for predicting the parameters of the ionosphere in the system for analyzing ionospheric data using deep learning methods is shown.


In this paper we will identify a cry signals of infants and the explanation behind the screams below 0-6 months of segment age. Detection of baby cry signals is essential for the pre-processing of various applications involving crial analysis for baby caregivers, such as emotion detection. Since cry signals hold baby well-being information and can be understood to an extent by experienced parents and experts. We train and validate the neural network architecture for baby cry detection and also test the fastAI with the neural network. Trained neural networks will provide a model and this model can predict the reason behind the cry sound. Only the cry sounds are recognized, and alert the user automatically. Created a web application by responding and detecting different emotions including hunger, tired, discomfort, bellypain.


Author(s):  
Н.А. Полковникова ◽  
Е.В. Тузинкевич ◽  
А.Н. Попов

В статье рассмотрены технологии компьютерного зрения на основе глубоких свёрточных нейронных сетей. Применение нейронных сетей особенно эффективно для решения трудно формализуемых задач. Разработана архитектура свёрточной нейронной сети применительно к задаче распознавания и классификации морских объектов на изображениях. В ходе исследования выполнен ретроспективный анализ технологий компьютерного зрения и выявлен ряд проблем, связанных с применением нейронных сетей: «исчезающий» градиент, переобучение и вычислительная сложность. При разработке архитектуры нейросети предложено использовать функцию активации RELU, обучение некоторых случайно выбранных нейронов и нормализацию с целью упрощения архитектуры нейросети. Сравнение используемых в нейросети функций активации ReLU, LeakyReLU, Exponential ReLU и SOFTMAX выполнено в среде Matlab R2020a. На основе свёрточной нейронной сети разработана программа на языке программирования Visual C# в среде MS Visual Studio для распознавания морских объектов. Программапредназначена для автоматизированной идентификации морских объектов, производит детектирование (нахождение объектов на изображении) и распознавание объектов с высокой вероятностью обнаружения. The article considers computer vision technologies based on deep convolutional neural networks. Application of neural networks is particularly effective for solving difficult formalized problems. As a result convolutional neural network architecture to the problem of recognition and classification of marine objects on images is implemented. In the research process a retrospective analysis of computer vision technologies was performed and a number of problems associated with the use of neural networks were identified: vanishing gradient, overfitting and computational complexity. To solve these problems in neural network architecture development, it was proposed to use RELU activation function, training some randomly selected neurons and normalization for simplification of neural network architecture. Comparison of ReLU, LeakyReLU, Exponential ReLU, and SOFTMAX activation functions used in the neural network implemented in Matlab R2020a.The computer program based on convolutional neural network for marine objects recognition implemented in Visual C# programming language in MS Visual Studio integrated development environment. The program is designed for automated identification of marine objects, produces detection (i.e., presence of objects on image), and objects recognition with high probability of detection.


2016 ◽  
Vol 62 (2) ◽  
pp. 197-202 ◽  
Author(s):  
Dawid Połap ◽  
Marcin Woźniak

Abstract This article illustrates modeling of flexible neural networks for handwritten signatures preprocessing. An input signature is interpolated to adjust inclination angle, than descriptor vector is composed. This information is preprocessed in proposed flexible neural network architecture, in which some neurons are becoming crucial for recognition and adapt to classification purposes. Experimental research results are compared in benchmark tests with classic approach to discuss efficiency of proposed solution.


Sign in / Sign up

Export Citation Format

Share Document