Face Recognition Through Multi-Resolution Images

2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

In this paper, we introduce a new method for face recognition in multi-resolution images. The proposed method is composed of two phases: an off-line phase and an inference phase. In the off-line phase, we built the Kernel Partial Least Squares (KPLS) regression model to map the LR facial features to HR ones. The KPLS predictor was then used in the inference phase to map HR features from LR features. We applied in both phases the Block-Based Discrete Cosine Transform (BBDCT) descriptor to enhance the facial feature description. Finally, the identity matching was carried out with the K-Nearest Neighbor (KNN) classifier. Experimental study was conducted on the AR and ORL databases and the obtained results proved the efficiency of the proposed method to deal with LR and VLR face recognition problem.

Author(s):  
Amal A. Moustafa ◽  
Ahmed Elnakib ◽  
Nihal F. F. Areed

This paper presents a methodology for Age-Invariant Face Recognition (AIFR), based on the optimization of deep learning features. The proposed method extracts deep learning features using transfer deep learning, extracted from the unprocessed face images. To optimize the extracted features, a Genetic Algorithm (GA) procedure is designed in order to select the most relevant features to the problem of identifying a person based on his/her facial images over different ages. For classification, K-Nearest Neighbor (KNN) classifiers with different distance metrics are investigated, i.e., Correlation, Euclidian, Cosine, and Manhattan distance metrics. Experimental results using a Manhattan distance KNN classifier achieves the best Rank-1 recognition rate of 86.2% and 96% on the standard FGNET and MORPH datasets, respectively. Compared to the state-of-the-art methods, our proposed method needs no preprocessing stages. In addition, the experiments show its privilege over other related methods.


Author(s):  
C Hemalatha ◽  
E Logashanmugam

<span>Face recognition system is one of the most interesting studied topics in computer vision for past two decades. Among the other popular biometrics such as the retina, fingerprint, and iris recognition systems, the face recognition is capable of recognizing the uncooperative samples in a non-intrusive manner. Also, it can be applied to many applications of surveillance security, forensics, border control, digital entertainment where face recognition is used in most. In the proposed system an automatic face recognition system is discussed. The proposed recognition system is based on the Dual-Tree M-Band Wavelet Transform (DTMBWT) transform algorithm and features obtained by varying the different filter in the DTMBWT transform. Then the different filter features are classified by means of the K-Nearest Neighbor (KNN) classifier for recognizing the face correctly. The implementation of the system is done by using the ORL face image database, and the performance metrics are calculated.</span>


Author(s):  
CHING-WEN CHEN ◽  
CHUNG-LIN HUANG

This paper presents a face recognition system which can identify the unknown identity effectively using the front-view facial features. In front-view facial feature extractions, we can capture the contours of eyes and mouth by the deformable template model because of their analytically describable shapes. However, the shapes of eyebrows, nostrils and face are difficult to model using a deformable template. We extract them by using the active contour model (snake). After the contours of all facial features have been captured, we calculate effective feature values from these extracted contours and construct databases for unknown identities classification. In the database generation phase, 12 models are photographed, and feature vectors are calculated for each portrait. In the identification phase if any one of these 12 persons has his picture taken again, the system can recognize his identity.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


2020 ◽  
Author(s):  
aras Masood Ismael ◽  
Ömer F Alçin ◽  
Karmand H Abdalla ◽  
Abdulkadir k sengur

Abstract In this paper, a novel approach that is based on two-stepped majority voting is proposed for efficient EEG based emotion classification. Emotion recognition is important for human-machine interactions. Facial-features and body-gestures based approaches have been generally proposed for emotion recognition. Recently, EEG based approaches become more popular in emotion recognition. In the proposed approach, the raw EEG signals are initially low-pass filtered for noise removal and band-pass filters are used for rhythms extraction. For each rhythm, the best performed EEG channels are determined based on wavelet-based entropy features and fractal dimension based features. The k-nearest neighbor (KNN) classifier is used in classification. The best five EEG channels are used in majority voting for getting the final predictions for each EEG rhythm. In the second majority voting step, the predictions from all rhythms are used to get a final prediction. The DEAP dataset is used in experiments and classification accuracy, sensitivity and specificity are used for performance evaluation metrics. The experiments are carried out to classify the emotions into two binary classes such as high valence (HV) vs low valence (LV) and high arousal (HA) vs low arousal (LA). The experiments show that 86.3% HV vs LV discrimination accuracy and 85.0% HA vs LA discrimination accuracy is obtained. The obtained results are also compared with some of the existing methods. The comparisons show that the proposed method has potential in the use of EEG based emotion classification.


Author(s):  
Atul Kumar Verma ◽  
Indu Saini ◽  
Barjinder Singh Saini

In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.


Author(s):  
M. Parisa Beham ◽  
S. M. Mansoor Roomi ◽  
J. Alageshan ◽  
V. Kapileshwaran

Face recognition and authentication are two significant and dynamic research issues in computer vision applications. There are many factors that should be accounted for face recognition; among them pose variation is a major challenge which severely influence in the performance of face recognition. In order to improve the performance, several research methods have been developed to perform the face recognition process with pose invariant conditions in constrained and unconstrained environments. In this paper, the authors analyzed the performance of a popular texture descriptors viz., Local Binary Pattern, Local Derivative Pattern and Histograms of Oriented Gradients for pose invariant problem. State of the art preprocessing techniques such as Discrete Cosine Transform, Difference of Gaussian, Multi Scale Retinex and Gradient face have also been applied before feature extraction. In the recognition phase K- nearest neighbor classifier is used to accomplish the classification task. To evaluate the efficiency of pose invariant face recognition algorithm three publicly available databases viz. UMIST, ORL and LFW datasets have been used. The above said databases have very wide pose variations and it is proved that the state of the art method is efficient only in constrained situations.


2016 ◽  
Vol 13 (5) ◽  
Author(s):  
Malik Yousef ◽  
Waleed Khalifa ◽  
Loai AbdAllah

SummaryThe performance of many learning and data mining algorithms depends critically on suitable metrics to assess efficiency over the input space. Learning a suitable metric from examples may, therefore, be the key to successful application of these algorithms. We have demonstrated that the k-nearest neighbor (kNN) classification can be significantly improved by learning a distance metric from labeled examples. The clustering ensemble is used to define the distance between points in respect to how they co-cluster. This distance is then used within the framework of the kNN algorithm to define a classifier named ensemble clustering kNN classifier (EC-kNN). In many instances in our experiments we achieved highest accuracy while SVM failed to perform as well. In this study, we compare the performance of a two-class classifier using EC-kNN with different one-class and two-class classifiers. The comparison was applied to seven different plant microRNA species considering eight feature selection methods. In this study, the averaged results show that EC-kNN outperforms all other methods employed here and previously published results for the same data. In conclusion, this study shows that the chosen classifier shows high performance when the distance metric is carefully chosen.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 290 ◽  
Author(s):  
Xiong Gan ◽  
Hong Lu ◽  
Guangyou Yang

This paper proposes a new method named composite multiscale fluctuation dispersion entropy (CMFDE), which measures the complexity of time series under different scale factors and synthesizes the information of multiple coarse-grained sequences. A simulation validates that CMFDE could improve the stability of entropy estimation. Meanwhile, a fault recognition method for rolling bearings based on CMFDE, the minimum redundancy maximum relevancy (mRMR) method, and the k nearest neighbor (kNN) classifier (CMFDE-mRMR-kNN) is developed. For the CMFDE-mRMR-kNN method, the CMFDE method is introduced to extract the fault characteristics of the rolling bearings. Then, the sensitive features are obtained by utilizing the mRMR method. Finally, the kNN classifier is used to recognize the different conditions of the rolling bearings. The effectiveness of the proposed CMFDE-mRMR-kNN method is verified by analyzing the standard experimental dataset. The experimental results show that the proposed fault diagnosis method can effectively classify the conditions of rolling bearings.


Sign in / Sign up

Export Citation Format

Share Document