scholarly journals Analysis of Different M-Band Wavelet Filters for Face Recognition using Nearest Neighbor Classifier

Author(s):  
C Hemalatha ◽  
E Logashanmugam

<span>Face recognition system is one of the most interesting studied topics in computer vision for past two decades. Among the other popular biometrics such as the retina, fingerprint, and iris recognition systems, the face recognition is capable of recognizing the uncooperative samples in a non-intrusive manner. Also, it can be applied to many applications of surveillance security, forensics, border control, digital entertainment where face recognition is used in most. In the proposed system an automatic face recognition system is discussed. The proposed recognition system is based on the Dual-Tree M-Band Wavelet Transform (DTMBWT) transform algorithm and features obtained by varying the different filter in the DTMBWT transform. Then the different filter features are classified by means of the K-Nearest Neighbor (KNN) classifier for recognizing the face correctly. The implementation of the system is done by using the ORL face image database, and the performance metrics are calculated.</span>

Author(s):  
Vinodpuri Rampuri Gosavi ◽  
Anil Kishanrao Deshmane ◽  
Ganesh Shahuba Sable

Image processing has enormous applications and bio-metrics is one of them that has become a focal point for researchers, as well as for developers. The most common application of bio-metrics is the face analysis. The face analysis is an efficient method to detect and verify the faces of people. In this research article we have the proposed techniques are CRC and KNN. Generally, CRC (Collaboration representation based classification) relies on the collaboration among various classes to represent an image sample. KNN (K-Nearest Neighbor) it is a category of classification approach that utilized to access regression purposes. The experiment is performed on the Yale database and the results are acquired from the simulation tool MATLAB. The performance parameters are accurate, processing time, random noise and random occlusion. A comparison of performance is described and it is proven that the proposed method results give the enhancement in the overall performance of face recognition and accuracy value is 99%.


2018 ◽  
Vol 7 (3) ◽  
pp. 1282
Author(s):  
Hemalatha C ◽  
Logashanmugam E

In human identification, the face acts as an important tool that carries the identity of each person. The human mind has the ability to re-cognize faces after the first view of a human face. Though there are many types of face detection/recognition system found no method can give the 100% accurate outputs. In this proposed system we are implementing and analyzing a new method that can be used for person recognition system that can produce better output accuracies. In the proposed system of person recognition method, one of the robust wavelet transform methods is used for the extraction of the features from the original images. The wavelet type used is known as the Dual Tree M-Band Wavelet Transform (DTMBWT) method. Using this transform the low and high sub-bands is obtained. These low and high sub-band coefficients are given as the input for the classification purpose. The sub-band obtained from the DTMBWT transform is given as the inputs for the classification purpose. The classification process is done using the K-Nearest Neighbor (KNN) classifier scheme. The system is implemented by using the facial images from the ORL database. By using this dataset images the performance measures of the proposed system is calculated in the form of graphical results such as Receiver Operating Characteristic (ROC), Inverse ROC and Expected Performance Curve (EPC) curves. Results show that proposed DTMBWT based face recognition provides better results than other approaches.  


2021 ◽  
Vol 38 (1) ◽  
pp. 51-60
Author(s):  
Semih Ergin ◽  
Sahin Isik ◽  
Mehmet Bilginer Gulmezoglu

In this paper, the implementations and comparison of some classifiers along with 2D subspace projection approaches have been carried out for the face recognition problem. For this purpose, the well-known classifiers such as K-Nearest Neighbor (K-NN), Common Matrix Approach (CMA), Support Vector Machine (SVM) and Convolutional Neural Network (CNN) are conducted on low dimensional face representations that are determined from 2DPCA-, 2DSVD- and 2DFDA approaches. CMA, which is a 2D version of the Common Vector Approach (CVA), finds a common matrix for each face class. From the experimental results, we have observed that the SVM presents a dominant performance in general. When overall results of all datasets are considered, CMA is slightly superior to others in case of 2DPCA- and 2DSVD-based features matrices of the AR dataset. On the other side, CNN is better than other classifiers when it comes to develop a face recognition system based on original face samples and 2DPCA-based feature matrices of the Yale dataset. The experimental results indicate that use of these feature matrices with CMA, SVM, and CNN in classification problems is more advantageous than the use of original pixel matrices in the sense of both processing time and memory requirement.


2014 ◽  
Vol 971-973 ◽  
pp. 1710-1713
Author(s):  
Wen Huan Wu ◽  
Ying Jun Zhao ◽  
Yong Fei Che

Face detection is the key point in automatic face recognition system. This paper introduces the face detection algorithm with a cascade of Adaboost classifiers and how to configure OpenCV in MCVS. Using OpenCV realized the face detection. And a detailed analysis of the face detection results is presented. Through experiment, we found that the method used in this article has a high accuracy rate and better real-time.


Now a days one of the critical factors that affects the recognition performance of any face recognition system is partial occlusion. The paper addresses face recognition in the presence of sunglasses and scarf occlusion. The face recognition approach that we proposed, detects the face region that is not occluded and then uses this region to obtain the face recognition. To segment the occluded and non-occluded parts, adaptive Fuzzy C-Means Clustering is used and for recognition Minimum Cost Sub-Block Matching Distance(MCSBMD) are used. The input face image is divided in to number of sub blocks and each block is checked if occlusion present or not and only from non-occluded blocks MWLBP features are extracted and are used for classification. Experiment results shows our method is giving promising results when compared to the other conventional techniques.


Author(s):  
Dr.C K Gomathy ◽  
T. suneel ◽  
Y.Jeeevan Kumar Reddy

The Face recognition and image or video recognition are popular research topics in biometric technology. Real-time face recognition is an exciting field and a rapidly evolving issue. Key component analysis (PCA) may be a statistical technique collectively called correlational analysis . The goal of PCA is to scale back the massive amount of knowledge storage to the dimensions of the functional space required to render the face recognition system. The wide one-dimensional pixel vector generated from the two-dimensional image of the face and therefore the basic elements of the spatial function are designed for face recognition using PCA. this is often the projection of your own space. Sufficient space is decided by the brand. specialise in the eigenvectors of the covariance matrix of the fingerprint image collection. i'm building a camera-based real-time face recognition system and installing an algorithm. Use OpenCV, Haar Cascade, Eigen face, Fisher Face, LBPH and Python for program development.


Author(s):  
Amal A. Moustafa ◽  
Ahmed Elnakib ◽  
Nihal F. F. Areed

This paper presents a methodology for Age-Invariant Face Recognition (AIFR), based on the optimization of deep learning features. The proposed method extracts deep learning features using transfer deep learning, extracted from the unprocessed face images. To optimize the extracted features, a Genetic Algorithm (GA) procedure is designed in order to select the most relevant features to the problem of identifying a person based on his/her facial images over different ages. For classification, K-Nearest Neighbor (KNN) classifiers with different distance metrics are investigated, i.e., Correlation, Euclidian, Cosine, and Manhattan distance metrics. Experimental results using a Manhattan distance KNN classifier achieves the best Rank-1 recognition rate of 86.2% and 96% on the standard FGNET and MORPH datasets, respectively. Compared to the state-of-the-art methods, our proposed method needs no preprocessing stages. In addition, the experiments show its privilege over other related methods.


2012 ◽  
Vol 241-244 ◽  
pp. 1705-1709
Author(s):  
Ching Tang Hsieh ◽  
Chia Shing Hu

In this paper, a robust and efficient face recognition system based on luminance distribution by using maximum likelihood estimation is proposed. The distribution of luminance components of the face region is acquired and applied to maximum likelihood test for face matching. The experimental results showed that the proposed method has a high recognition rate and requires less computation time.


Author(s):  
M. Parisa Beham ◽  
S. M. Mansoor Roomi ◽  
J. Alageshan ◽  
V. Kapileshwaran

Face recognition and authentication are two significant and dynamic research issues in computer vision applications. There are many factors that should be accounted for face recognition; among them pose variation is a major challenge which severely influence in the performance of face recognition. In order to improve the performance, several research methods have been developed to perform the face recognition process with pose invariant conditions in constrained and unconstrained environments. In this paper, the authors analyzed the performance of a popular texture descriptors viz., Local Binary Pattern, Local Derivative Pattern and Histograms of Oriented Gradients for pose invariant problem. State of the art preprocessing techniques such as Discrete Cosine Transform, Difference of Gaussian, Multi Scale Retinex and Gradient face have also been applied before feature extraction. In the recognition phase K- nearest neighbor classifier is used to accomplish the classification task. To evaluate the efficiency of pose invariant face recognition algorithm three publicly available databases viz. UMIST, ORL and LFW datasets have been used. The above said databases have very wide pose variations and it is proved that the state of the art method is efficient only in constrained situations.


Sign in / Sign up

Export Citation Format

Share Document