kernel partial least squares
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 2)

2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

In this paper, we introduce a new method for face recognition in multi-resolution images. The proposed method is composed of two phases: an off-line phase and an inference phase. In the off-line phase, we built the Kernel Partial Least Squares (KPLS) regression model to map the LR facial features to HR ones. The KPLS predictor was then used in the inference phase to map HR features from LR features. We applied in both phases the Block-Based Discrete Cosine Transform (BBDCT) descriptor to enhance the facial feature description. Finally, the identity matching was carried out with the K-Nearest Neighbor (KNN) classifier. Experimental study was conducted on the AR and ORL databases and the obtained results proved the efficiency of the proposed method to deal with LR and VLR face recognition problem.


2021 ◽  
Vol 17 (11) ◽  
pp. 155014772110559
Author(s):  
Zelin Ren ◽  
Yongqiang Tang ◽  
Wensheng Zhang

The fault diagnosis approaches based on k-nearest neighbor rule have been widely researched for industrial processes and achieve excellent performance. However, for quality-related fault diagnosis, the approaches using k-nearest neighbor rule have been still not sufficiently studied. To tackle this problem, in this article, we propose a novel quality-related fault diagnosis framework, which is made up of two parts: fault detection and fault isolation. In the fault detection stage, we innovatively propose a novel non-linear quality-related fault detection method called kernel partial least squares- k-nearest neighbor rule, which organically incorporates k-nearest neighbor rule with kernel partial least squares. Specifically, we first employ kernel partial least squares to establish a non-linear regression model between quality variables and process variables. After that, the statistics and thresholds corresponding to process space and predicted quality space are appropriately designed by adopting k-nearest neighbor rule. In the fault isolation stage, in order to match our proposed non-linear quality-related fault detection method kernel partial least squares- k-nearest neighbor seamlessly, we propose a modified variable contributions by k-nearest neighbor (VCkNN) fault isolation method called modified variable contributions by k-nearest neighbor (MVCkNN), which elaborately introduces the idea of the accumulative relative contribution rate into VC k-nearest neighbor, such that the smearing effect caused by the normal distribution hypothesis of VC k-nearest neighbor can be mitigated effectively. Finally, a widely used numerical example and the Tennessee Eastman process are employed to verify the effectiveness of our proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Maroua Said ◽  
Okba Taouali

We suggest in this article a dynamic reduced algorithm in order to enhance the monitoring abilities of nonlinear processes. Dynamic fault detection using data-driven methods is among the key technologies, which shows its ability to improve the performance of dynamic systems. Among the data-driven techniques, we find the kernel partial least squares (KPLS) which is presented as an interesting method for fault detection and monitoring in industrial systems. The dynamic reduced KPLS method is proposed for the fault detection procedure in order to use the advantages of the reduced KPLS models in online mode. Furthermore, the suggested method is developed to monitor the time-varying dynamic system and also update the model of reduced reference. The reduced model is used to minimize the computational cost and time and also to choose a reduced set of kernel functions. Indeed, the dynamic reduced KPLS allows adaptation of the reduced model, observation by observation, without the risk of losing or deleting important information. For each observation, the update of the model is available if and only if a further normal observation that contains new pertinent information is present. The general principle is to take only the normal and the important new observation in the feature space. Then the reduced set is built for the fault detection in the online phase based on a quadratic prediction error chart. Thereafter, the Tennessee Eastman process and air quality are used to precise the performances of the suggested methods. The simulation results of the dynamic reduced KPLS method are compared with the standard one.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 506
Author(s):  
Jorge Daniel Mello-Román ◽  
Adolfo Hernández ◽  
Julio César Mello-Román

Kernel partial least squares regression (KPLS) is a non-linear method for predicting one or more dependent variables from a set of predictors, which transforms the original datasets into a feature space where it is possible to generate a linear model and extract orthogonal factors also called components. A difficulty in implementing KPLS regression is determining the number of components and the kernel function parameters that maximize its performance. In this work, a method is proposed to improve the predictive ability of the KPLS regression by means of memetic algorithms. A metaheuristic tuning procedure is carried out to select the number of components and the kernel function parameters that maximize the cumulative predictive squared correlation coefficient, an overall indicator of the predictive ability of KPLS. The proposed methodology led to estimate optimal parameters of the KPLS regression for the improvement of its predictive ability.


Sign in / Sign up

Export Citation Format

Share Document