Research on Root Locus Correction Algorithm in Automatic Control System

Author(s):  
Weifang Zhai ◽  
Juan Feng

Aiming at the stability control of the automatic control system, this paper proposes a root locus correction scheme. By establishing the mathematical model of the control object and using the root locus correction method in the classical control theory, the design of the control system is completed. The simulation experiment of the control system is carried out in the MATLAB environment, and the key points of the scheme are summarized. The simulation results show that the scheme not only successfully achieves the stability control of the system, but also meets the expected performance index, which fully proves its correctness and effectiveness.

2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


Author(s):  
Vitaly Vysotsky ◽  
◽  
Igor Markov ◽  
Yuri Matveev ◽  
◽  
...  

The article deals with the main trends in the development of marine automatic AC electric drive systems. A variant of the implementation of an electric drive using an electromechanical converter of a synchronous machine with electromagnetic field excitation is presented. A promising electric drive system with a valve engine for the icebreaker's with the Azipod propulsion and steering system is proposed. The aim of the work is to eliminate the structural complexity and expand the functional capabilities of the electric drive by using a scalar automatic control system of the frequency of rotation in the two-zone control of the valve motor of the EPS. The novelty lies in the use of the approach and representation of the control object-a valve motor as an analog of a DC collector motor controlled by an armature and by a field. The analysis of control processes is directly related to the processes of electromechanical energy conversion occurring in a synchronous machine.


2017 ◽  
pp. 72-78
Author(s):  
Sergey Pachkin ◽  
Sergey Pachkin ◽  
Roman Kotlyarov ◽  
Roman Kotlyarov

One of the main tasks solved in the development of automatic control systems is the identification of the control object, which consists in obtaining its mathematical description. The nature and type of the mathematical model is determined by the goals and tasks for which it will be used. In the present case, the aim of obtaining the model is the synthesis of an automatic control system. Proceeding from the requirements of control problems, the identification problem consists in determining the structure and parameters of the mathematical model that ensure the best similarity of the model and object responses to the same input action. The article considers the experimental method of obtaining a mathematical description of the control object based on the results of measuring its input and output parameters and then processing the obtained results. The control object is the EP10 emulator made by the Oven Company, which is a miniature furnace. The emulator is used in experimental research in the process of commissioning using thermostat controls, and also applicable for educational purposes as part of training and research stands. As a result of structural identification with subsequent adjustment of the coefficients with the help of parametric identification, a model of the control object in the form of a second order aperiodic link is obtained. Parameters and type of the mathematical model allowed to make calculations and determine the parameters of adjustment of the TRM251 PID-controller. The software implementation of the automatic control system in the MatLAB environment made it possible to evaluate transient processes in a closed system. Thus, the calculation and analysis of the automatic control system in the first approximation were made. The final result can be obtained at the stage of commissioning the automatic temperature control system in the EP10 emulator using adaptation algorithms.


2017 ◽  
Vol 8 (3) ◽  
Author(s):  
V. A. Khobin ◽  
M. V. Levinskyi

Technological type control objects specific feature, which distinguish them among many mobile or electro technical types, is more low-frequency parametric disturbances spectral composition than spectral composition of coordinate disturbances. Most often parametric disturbances reveal themselves in changing control object transmission coefficient in the channel ―controller control action – control variable‖. On a number of occasions transmission coefficient can change in a wide range – in 2…10 times more than initial value. Coordinate disturbances change control variables but don’t change control object features. Besides spectral density of control variable change, under the impact of coordinate disturbances, has its peak in low-frequency range and characterize forced component of automatic control system motion. Parametric disturbances have influence on control variables and on control object properties, in particular on its transition coefficient. In this case, character of transient processes change, i.e. free motion component of the system. Spectral density of control variable changes, under the influence of transition coefficient change, has its peak, in general, in mid-frequency range. In the case, when using filters, even approximately, it is possible to separate out mid-frequency component from the overall process, which characterizes generally free motion of automatic control system, then it is possible to estimate current value of control object transmission coefficient using parameters change of this component. Such control variable components motions separation is used for designing selftuning ACS. In this case the informative parameter is dispersions difference of control object control variable and control variable of its model in the outputs of linear band pass filters. This dispersion difference is in proportion to current value of transition coefficient. In this article the results of simulation modeling computer experiments of self-tuning automatic control system with opened self-tuning loop are represented. The analysis of filtering efficiency, for three filter model options, are represented as well. The analysis was carried out with three different coordinate disturbances spectral compositions, with the same dynamics of control object and its model and with the different dynamics. Recommendations for filters structures alternatives selection are given. The possibility of optimal parametric tuning of filters is examined.


2011 ◽  
Vol 383-390 ◽  
pp. 4246-4250
Author(s):  
Mu Cheng Zhu ◽  
Shi Liang Nie ◽  
Ya Ping Wang ◽  
Yong Jiang ◽  
Jiong Guo

Soakage agent in glass fiber production is critically, the stability of its quality is directly related to the stability of the glass fiber quality. According to the characteristics of the soakage glass in fiber agent production process, this paper is mainly introduced the multi-sensor information collection for the soakage agent process parameters, and is proposed to use PLC programming, PID control and fuzzy control harmony methods to achieve the real-time automatic control preparation process of the soakage agent in adding water of amount, adding oil of amount, temperature control, liquid level control, viscosity test and many other parameters . The practical application of the automatic control system is reliable, accurate, real time.


2018 ◽  
Vol 212 (1) ◽  
pp. 125-136
Author(s):  
Joanna Sznajder

Abstract The article presents the analysis of the automatic alternate current motor control system, carried out by the author. The automatic control system has been implemented on the existing laboratory stand, containing: the squirrel-cage asynchronous motor and the frequency inverter. The existing stand imposed one of the available speed control methods for the motor and the necessity of the appropriate elements selection for the automatic control system [1]. The automatic control system has been designed and created as the constant value follow-up digital controller. To designate the parameters of the control object the unit step method of was used. After registering the output changes caused by the unit step, the characteristic curve was received that allowed to determine the alternative transmittance of the control object which, in turn, has made possible to find the appropriate controller settings.


Sign in / Sign up

Export Citation Format

Share Document