Secure Data Hiding Using Eight Queens Solutions

2012 ◽  
Vol 6 (4) ◽  
pp. 55-70 ◽  
Author(s):  
Sunil Kumar Muttoo ◽  
Vinay Kumar ◽  
Abhishek Bansal

The 8-queens problem of placing 8 non-attacking queens on an 8x8 chessboard is used to hide message in an image. The method helps in randomizing the bit selection in a cover image for hiding purpose. Cover image is divided into blocks of 8x1 bytes and then masked with solutions of the 8-queens problem. Bits from the block are collected corresponding to the 8-queen solution to make a 7 bit string. LSB of the block is not considered. It gives a number in the range of 0 to 127. If a bit string, corresponding to the 8-queens solutions, matches with ASCII code of the first character from message, the corresponding solution number of the 8-queens problem is encrypted using RC4, and the cipher is stored in first block of the cover. This encrypted value works as key. The solution number corresponding to next character is XORED with the key and the resultant value is embedded in the LSB of next block. The algorithm has been tested with cover of different image file formats like BMP, PNG and TIFF. The algorithm provides very good capacity, imperceptibility and robustness.

The growth rate of the Internet is exceeding that of any previous technology. As the Internet has become the major medium for transferring sensitive information, the security of the transferred message has now become the utmost priority. To ensure the security of the transmitted data, Image steganography has emerged out as an eminent tool of information hiding. The frequency of availability of image file is high and provides high capacity. In this paper, a method of secure data hiding in image is proposed that uses knight tour positions and further 8-queen positions in 8*8 pixel blocks.The cover image is divided into 8*8 pixel blocks and pixels are selected from each block corresponding to the positions of Knight in 8*8 chessboard starting from different pixel positions. 8-pixel values are selected from alternate knight position. Selected pixels values converted to 8-bit ASCII code and result in 8* 8 bit matrix. 8-Queen’s solution on 8*8 chessboard is applied on 8*8 bit matrix. The bits selected from 8-Queens positions and compared with 8-bit ASCII code of message characters. The proposed algorithm changes the LSB of only some of the pixels based on the above comparison. Based on parameters like PSNR and MSE the efficiency of the method is checked after implementation. Then the comparison done with some already proposed techniques. This is how, image steganography showed interesting and promising results when compared with other techniques.


2014 ◽  
Vol 8 (2) ◽  
pp. 55-68 ◽  
Author(s):  
Vinay Kumar ◽  
Abhishek Bansal ◽  
Sunil Kumar Muttoo

Data hiding is an emerging field of research for secure data transmission over internet, ensuring ownership identification and copyright protection. A couple of techniques have been proposed based on pixel value differencing (PVD) and eight queens' solutions. In this paper, a new data hiding method based on inter-block difference in eight queen's solutions is presented. The result of inter-block difference is XORED with ASCII code of character from the message and the resultant value is embedded in LSB position. The presented approach is more efficient and it provides a more capacity with good imperceptibility. The approach supports different digital image file formats such as bmp, png and tiff.


2014 ◽  
Vol 89 (13) ◽  
pp. 11-20
Author(s):  
Prasita Mukherjee ◽  
Sourasekhar Banerjee ◽  
Asoke Nath

2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


2019 ◽  
Vol 68 (1) ◽  
pp. 01-07
Author(s):  
Tyler Taylor, Justin Rogers

Video Steganography is a strategy wherein we can conceal a wide range of documents with any extension into a carrying Video document. Right now, are utilizing two fundamental wording that is have host file and carrier file where host file is a hidden file (any sort of record like content document, picture document, and sound/video document) and carrier file must be a video record. The primary inspiration of this paper is to make sure about moving of information by utilizing steganography and cryptography system. It is worried about implanting data in a harmless spread media in a safe and hearty way. Right now expositions we are utilizing Forbidden Zone Data Hiding strategy where no modification is required in have signal range during information hidden procedure. To safely moving the information record, we use video information covering up and utilizing revision limit of rehash gather code with predominance of taboo zone information stowing away. Utilizing this methodology we can likewise stow away and move the enormous video record whose size is bigger than spread record in secure way. The principle favorable position of utilizing video record sequestered from everything data is the additional protection from of the outsider or unintended beneficiary because of the overall multifaceted nature of video contrasted with picture and sound document. I have effectively actualized the proposed system of video information hiding utilizing forbidden zone datahiding strategy (FZDH) on content document, picture record, sound record and video document. The exceptional element is that we can hide the bigger size video record behind the smaller size cover record.


Author(s):  
Pritam Patange

Abstract: Cloud computing has experienced significant growth in the recent years owing to the various advantages it provides such as 24/7 availability, quick provisioning of resources, easy scalability to name a few. Virtualization is the backbone of cloud computing. Virtual Machines (VMs) are created and executed by a software called Virtual Machine Monitor (VMM) or the hypervisor. It separates compute environments from the actual physical infrastructure. A disk image file representing a single virtual machine is created on the hypervisor’s file system. In this paper, we analysed the runtime performance of multiple different disk image file formats. The analysis comprises of four different parameters of performance namely- bandwidth, latency, input-output operations performed per second (IOPS) and power consumption. The impact of the hypervisor’s block and file sizes is also analysed for the different file formats. The paper aims to act as a reference for the reader in choosing the most appropriate disk file image format for their use case based on the performance comparisons made between different disk image file formats on two different hypervisors – KVM and VirtualBox. Keywords: Virtualization, Virtual disk formats, Cloud computing, fio, KVM, virt-manager, powerstat, VirtualBox.


Author(s):  
Nisha Manral

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information. Many different carrier file formats can be used, but digital images are the most popular because of their frequency on the Internet. For hiding secret information in images, there exists a large variety of steganographic techniques some are more complex than others and all of them have respective strong and weak points. Different applications have different requirements of the steganography technique used. For example, some applications may require absolute invisibility of the secret information, while others require a larger secret message to be hidden. This paper intends to give an overview of image steganography, its uses and techniques. It also attempts to identify the requirements of a good steganographic algorithm and briefly reflects on which steganographic techniques are more suitable for which applications.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 145
Author(s):  
Jung-Yao Yeh ◽  
Chih-Cheng Chen ◽  
Po-Liang Liu ◽  
Ying-Hsuan Huang

Data hiding is the art of embedding data into a cover image without any perceptual distortion of the cover image. Moreover, data hiding is a very crucial research topic in information security because it can be used for various applications. In this study, we proposed a high-capacity data-hiding scheme for absolute moment block truncation coding (AMBTC) decompressed images. We statistically analyzed the composition of the secret data string and developed a unique encoding and decoding dictionary search for adjusting pixel values. The dictionary was used in the embedding and extraction stages. The dictionary provides high data-hiding capacity because the secret data was compressed using dictionary-based coding. The experimental results of this study reveal that the proposed scheme is better than the existing schemes, with respect to the data-hiding capacity and visual quality.


Sign in / Sign up

Export Citation Format

Share Document