Breast Cancer Data Prediction by Dimensionality Reduction Using PCA and Adaptive Neuro Evolution

Author(s):  
R. R. Janghel ◽  
Ritu Tiwari ◽  
Rahul Kala ◽  
Anupam Shukla

In this paper a new approach for the prediction of breast cancer has been made by reducing the features of the data set using PCA (principal component analysis) technique and prediction results by simulating different models namely SANE (Symbiotic, Adaptive Neuro-evolution), Modular neural network, Fixed architecture evolutionary neural network (F-ENN), and Variable Architecture evolutionary neural network (V-ENN). The dimensionality reduction of the inputs achieved by PCA technique to an extent of 33% and further different models of the soft computing technique simulated and tested based on efficiency to find the optimum model. The SANE model includes maximum number of connections per neuron as 24, evolutionary population size of 1000, maximum neurons in hidden layer as 12, SANE elite value of 200, mutation rate of 0.2, and number of generations as 100. The simulated results reflect that this is the best model for the prediction of the breast cancer disease among the other models considered in the experiment and it can effectively assist the doctors for taking the diagnosis results as its efficiency found to be 98.52% accuracy which is highest.

2021 ◽  
pp. 1063293X2110251
Author(s):  
K Vijayakumar ◽  
Vinod J Kadam ◽  
Sudhir Kumar Sharma

Deep Neural Network (DNN) stands for multilayered Neural Network (NN) that is capable of progressively learn the more abstract and composite representations of the raw features of the input data received, with no need for any feature engineering. They are advanced NNs having repetitious hidden layers between the initial input and the final layer. The working principle of such a standard deep classifier is based on a hierarchy formed by the composition of linear functions and a defined nonlinear Activation Function (AF). It remains uncertain (not clear) how the DNN classifier can function so well. But it is clear from many studies that within DNN, the AF choice has a notable impact on the kinetics of training and the success of tasks. In the past few years, different AFs have been formulated. The choice of AF is still an area of active study. Hence, in this study, a novel deep Feed forward NN model with four AFs has been proposed for breast cancer classification: hidden layer 1: Swish, hidden layer, 2:-LeakyReLU, hidden layer 3: ReLU, and final output layer: naturally Sigmoidal. The purpose of the study is twofold. Firstly, this study is a step toward a more profound understanding of DNN with layer-wise different AFs. Secondly, research is also aimed to explore better DNN-based systems to build predictive models for breast cancer data with improved accuracy. Therefore, the benchmark UCI dataset WDBC was used for the validation of the framework and evaluated using a ten-fold CV method and various performance indicators. Multiple simulations and outcomes of the experimentations have shown that the proposed solution performs in a better way than the Sigmoid, ReLU, and LeakyReLU and Swish activation DNN in terms of different parameters. This analysis contributes to producing an expert and precise clinical dataset classification method for breast cancer. Furthermore, the model also achieved improved performance compared to many established state-of-the-art algorithms/models.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Habib Shah

PurposeBreast cancer is an important medical disorder, which is not a single disease but a cluster more than 200 different serious medical complications.Design/methodology/approachThe new artificial bee colony (ABC) implementation has been applied to probabilistic neural network (PNN) for training and testing purpose to classify the breast cancer data set.FindingsThe new ABC algorithm along with PNN has been successfully applied to breast cancers data set for prediction purpose with minimum iteration consuming.Originality/valueThe new implementation of ABC along PNN can be easily applied to times series problems for accurate prediction or classification.


Author(s):  
Manas Rajan Senapati ◽  
P. K. Routray ◽  
Pradipta Kishore Dash

A new approach for classification has been presented in this paper. The proposed technique, Modified Radial Basis Functional Neural Network (MRBFNN) consists of assigning weights between the input layer and the hidden layer of Radial Basis functional Neural Network (RBFNN). The centers of MRBFNN are initialized using Particle swarm Optimization (PSO) and variance and centers are updated using back propagation and both the sets of weights are updated using Recursive Least Square (RLS). Our simulation result is carried out on Wisconsin Breast Cancer (WBC) data set. The results are compared with RBFNN, where the variance and centers are updated using back propagation and weights are updated using Recursive Least Square (RLS) and Kalman Filter. It is found the proposed method provides more accurate result and better classification.


2021 ◽  
Vol 11 (10) ◽  
pp. 978
Author(s):  
Siti Fairuz Mat Radzi ◽  
Muhammad Khalis Abdul Karim ◽  
M Iqbal Saripan ◽  
Mohd Amiruddin Abdul Rahman ◽  
Iza Nurzawani Che Isa ◽  
...  

Automated machine learning (AutoML) has been recognized as a powerful tool to build a system that automates the design and optimizes the model selection machine learning (ML) pipelines. In this study, we present a tree-based pipeline optimization tool (TPOT) as a method for determining ML models with significant performance and less complex breast cancer diagnostic pipelines. Some features of pre-processors and ML models are defined as expression trees and optimal gene programming (GP) pipelines, a stochastic search system. Features of radiomics have been presented as a guide for the ML pipeline selection from the breast cancer data set based on TPOT. Breast cancer data were used in a comparative analysis of the TPOT-generated ML pipelines with the selected ML classifiers, optimized by a grid search approach. The principal component analysis (PCA) random forest (RF) classification was proven to be the most reliable pipeline with the lowest complexity. The TPOT model selection technique exceeded the performance of grid search (GS) optimization. The RF classifier showed an outstanding outcome amongst the models in combination with only two pre-processors, with a precision of 0.83. The grid search optimized for support vector machine (SVM) classifiers generated a difference of 12% in comparison, while the other two classifiers, naïve Bayes (NB) and artificial neural network—multilayer perceptron (ANN-MLP), generated a difference of almost 39%. The method’s performance was based on sensitivity, specificity, accuracy, precision, and receiver operating curve (ROC) analysis.


Background/Aim: Breast Cancer is the most often identified cancer among women and major reason for increasing mortality rate among women. The early strategies for estimating the breast cancer sicknesses helped in settling on choices about the progressions to have happened in high-chance patients which brought about the decrease of their dangers. Methods: In the proposed research, we have considered breast cancer data set from kaggle and we have done pre-processing tasks for missing values .We have no missing data values from the considered data set .The performance of the diagnosis model is obtained by using methods like classification, accuracy, sensitivity and specificity analysis. This paper proposes a prediction model to predict whether a people have a breast cancer disease or not and to provide an awareness or diagnosis on that. This is done by comparing the accuracies of applying rules to the individual results of Support Vector Machine, Random forest, Naive Bayes classifier and logistic regression on the dataset taken in a region to present an accurate model of predicting breast cancer disease. Results: The machine learning algorithms under study were able to predict breast cancer disease in patients with accuracy between 52.63% and 98.24%. Conclusions: It was shown that Random Forest has better Accuracy (98.24 %) when compared to different Machine-learning Algorithms.


2021 ◽  
pp. 1063293X2110160
Author(s):  
Dinesh Morkonda Gunasekaran ◽  
Prabha Dhandayudam

Nowadays women are commonly diagnosed with breast cancer. Feature based Selection method plays an important step while constructing a classification based framework. We have proposed Multi filter union (MFU) feature selection method for breast cancer data set. The feature selection process based on random forest algorithm and Logistic regression (LG) algorithm based union model is used for selecting important features in the dataset. The performance of the data analysis is evaluated using optimal features subset from selected dataset. The experiments are computed with data set of Wisconsin diagnostic breast cancer center and next the real data set from women health care center. The result of the proposed approach shows high performance and efficient when comparing with existing feature selection algorithms.


2021 ◽  
Vol 35 (3) ◽  
pp. 209-215
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Data mining techniques are included with Ensemble learning and deep learning for the classification. The methods used for classification are, Single C5.0 Tree (C5.0), Classification and Regression Tree (CART), kernel-based Support Vector Machine (SVM) with linear kernel, ensemble (CART, SVM, C5.0), Neural Network-based Fit single-hidden-layer neural network (NN), Neural Networks with Principal Component Analysis (PCA-NN), deep learning-based H2OBinomialModel-Deeplearning (HBM-DNN) and Enhanced H2OBinomialModel-Deeplearning (EHBM-DNN). In this study, experiments were conducted on pre-processed datasets using R programming and 10-fold cross-validation technique. The findings show that the ensemble model (CART, SVM and C5.0) and EHBM-DNN are more accurate for classification, compared with other methods.


Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


Sign in / Sign up

Export Citation Format

Share Document