scholarly journals Prediction of Breast Cancer Disease using Machine Learning Algorithms

Background/Aim: Breast Cancer is the most often identified cancer among women and major reason for increasing mortality rate among women. The early strategies for estimating the breast cancer sicknesses helped in settling on choices about the progressions to have happened in high-chance patients which brought about the decrease of their dangers. Methods: In the proposed research, we have considered breast cancer data set from kaggle and we have done pre-processing tasks for missing values .We have no missing data values from the considered data set .The performance of the diagnosis model is obtained by using methods like classification, accuracy, sensitivity and specificity analysis. This paper proposes a prediction model to predict whether a people have a breast cancer disease or not and to provide an awareness or diagnosis on that. This is done by comparing the accuracies of applying rules to the individual results of Support Vector Machine, Random forest, Naive Bayes classifier and logistic regression on the dataset taken in a region to present an accurate model of predicting breast cancer disease. Results: The machine learning algorithms under study were able to predict breast cancer disease in patients with accuracy between 52.63% and 98.24%. Conclusions: It was shown that Random Forest has better Accuracy (98.24 %) when compared to different Machine-learning Algorithms.

2020 ◽  
Vol 8 (5) ◽  
pp. 5353-5362

Background/Aim: Prostate cancer is regarded as the most prevalent cancer in the word and the main cause of deaths worldwide. The early strategies for estimating the prostate cancer sicknesses helped in settling on choices about the progressions to have happened in high-chance patients which brought about the decrease of their dangers. Methods: In the proposed research, we have considered informational collection from kaggle and we have done pre-processing tasks for missing values .We have three missing data values in compactness attribute and two missing values in fractal dimension were replaced by mean of their column values .The performance of the diagnosis model is obtained by using methods like classification, accuracy, sensitivity and specificity analysis. This paper proposes a prediction model to predict whether a people have a prostate cancer disease or not and to provide an awareness or diagnosis on that. This is done by comparing the accuracies of applying rules to the individual results of Support Vector Machine, Random forest, Naive Bayes classifier and logistic regression on the dataset taken in a region to present an accurate model of predicting prostate cancer disease. Results: The machine learning algorithms under study were able to predict prostate cancer disease in patients with accuracy between 70% and 90%. Conclusions: It was shown that Logistic Regression and Random Forest both has better Accuracy (90%) when compared to different Machine-learning Algorithms.


Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 65
Author(s):  
Ali Hewiagh ◽  
Kannan Ramakrishnan ◽  
Timothy Tzen Vun Yap ◽  
Ching Seong Tan

Online frauds have pernicious impacts on different system domains, including waste management systems. Fraudsters illegally obtain rewards for their recycling activities or avoid penalties for those who are required to recycle their own waste. Although some approaches have been introduced to prevent such fraudulent activities, the fraudsters continuously seek new ways to commit illegal actions. Machine learning technology has shown significant and impressive results in identifying new online fraud patterns in different system domains such as e-commerce, insurance, and banking. The purpose of this paper, therefore, is to analyze a waste management system and develop a machine learning model to detect fraud in the system. The intended system allows consumers, individuals, and organizations to track, monitor, and update their performance in their recycling activities. The data set provided by a waste management organization is used for the analysis and the model training. This data set contains transactions of users’ recycling activities and behaviors. Three machine learning algorithms, random forest, support vector machine, and multi-layer perceptron are used in the experiments and the best detection model is selected based on the model’s performance. Results show that each of these algorithms can be used for fraud detection in waste managements with high accuracy. The random forest algorithm produces the optimal model with an accuracy of 96.33%, F1-score of 95.20%, and ROC of 98.92%.


2021 ◽  
Author(s):  
Aayushi Rathore ◽  
Anu Saini ◽  
Navjot Kaur ◽  
Aparna Singh ◽  
Ojasvi Dutta ◽  
...  

ABSTRACTSepsis is a severe infectious disease with high mortality, and it occurs when chemicals released in the bloodstream to fight an infection trigger inflammation throughout the body and it can cause a cascade of changes that damage multiple organ systems, leading them to fail, even resulting in death. In order to reduce the possibility of sepsis or infection antiseptics are used and process is known as antisepsis. Antiseptic peptides (ASPs) show properties similar to antigram-negative peptides, antigram-positive peptides and many more. Machine learning algorithms are useful in screening and identification of therapeutic peptides and thus provide initial filters or built confidence before using time consuming and laborious experimental approaches. In this study, various machine learning algorithms like Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbour (KNN) and Logistic Regression (LR) were evaluated for prediction of ASPs. Moreover, the characteristics physicochemical features of ASPs were also explored to use them in machine learning. Both manual and automatic feature selection methodology was employed to achieve best performance of machine learning algorithms. A 5-fold cross validation and independent data set validation proved RF as the best model for prediction of ASPs. Our RF model showed an accuracy of 97%, Matthew’s Correlation Coefficient (MCC) of 0.93, which are indication of a robust and good model. To our knowledge this is the first attempt to build a machine learning classifier for prediction of ASPs.


2020 ◽  
Vol 12 (5) ◽  
pp. 41-51
Author(s):  
Shaimaa Mahmoud ◽  
◽  
Mahmoud Hussein ◽  
Arabi Keshk

Opinion mining in social networks data is considered as one of most important research areas because a large number of users interact with different topics on it. This paper discusses the problem of predicting future products rate according to users’ comments. Researchers interacted with this problem by using machine learning algorithms (e.g. Logistic Regression, Random Forest Regression, Support Vector Regression, Simple Linear Regression, Multiple Linear Regression, Polynomial Regression and Decision Tree). However, the accuracy of these techniques still needs to be improved. In this study, we introduce an approach for predicting future products rate using LR, RFR, and SVR. Our data set consists of tweets and its rate from 1:5. The main goal of our approach is improving the prediction accuracy about existing techniques. SVR can predict future product rate with a Mean Squared Error (MSE) of 0.4122, Linear Regression model predict with a Mean Squared Error of 0.4986 and Random Forest Regression can predict with a Mean Squared Error of 0.4770. This is better than the existing approaches accuracy.


2020 ◽  
Vol 1 (1) ◽  
pp. 42-50
Author(s):  
Hanna Arini Parhusip ◽  
Bambang Susanto ◽  
Lilik Linawati ◽  
Suryasatriya Trihandaru ◽  
Yohanes Sardjono ◽  
...  

The article presents the study of several machine learning algorithms that are used to study breast cancer data with 33 features from 569 samples. The purpose of this research is to investigate the best algorithm for classification of breast cancer. The data may have different scales with different large range one to the other features and hence the data are transformed before the data are classified. The used classification methods in machine learning are logistic regression, k-nearest neighbor, Naive bayes classifier, support vector machine, decision tree and random forest algorithm. The original data and the transformed data are classified with size of data test is 0.3. The SVM and Naive Bayes algorithms have no improvement of accuracy with random forest gives the best accuracy among all. Therefore the size of data test is reduced to 0.25 leading to improve all algorithms in transformed data classifications. However, random forest algorithm still gives the best accuracy.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3532 ◽  
Author(s):  
Nicola Mansbridge ◽  
Jurgen Mitsch ◽  
Nicola Bollard ◽  
Keith Ellis ◽  
Giuliana Miguel-Pacheco ◽  
...  

Grazing and ruminating are the most important behaviours for ruminants, as they spend most of their daily time budget performing these. Continuous surveillance of eating behaviour is an important means for monitoring ruminant health, productivity and welfare. However, surveillance performed by human operators is prone to human variance, time-consuming and costly, especially on animals kept at pasture or free-ranging. The use of sensors to automatically acquire data, and software to classify and identify behaviours, offers significant potential in addressing such issues. In this work, data collected from sheep by means of an accelerometer/gyroscope sensor attached to the ear and collar, sampled at 16 Hz, were used to develop classifiers for grazing and ruminating behaviour using various machine learning algorithms: random forest (RF), support vector machine (SVM), k nearest neighbour (kNN) and adaptive boosting (Adaboost). Multiple features extracted from the signals were ranked on their importance for classification. Several performance indicators were considered when comparing classifiers as a function of algorithm used, sensor localisation and number of used features. Random forest yielded the highest overall accuracies: 92% for collar and 91% for ear. Gyroscope-based features were shown to have the greatest relative importance for eating behaviours. The optimum number of feature characteristics to be incorporated into the model was 39, from both ear and collar data. The findings suggest that one can successfully classify eating behaviours in sheep with very high accuracy; this could be used to develop a device for automatic monitoring of feed intake in the sheep sector to monitor health and welfare.


Author(s):  
Harsha A K

Abstract: Since the advent of encryption, there has been a steady increase in malware being transmitted over encrypted networks. Traditional approaches to detect malware like packet content analysis are inefficient in dealing with encrypted data. In the absence of actual packet contents, we can make use of other features like packet size, arrival time, source and destination addresses and other such metadata to detect malware. Such information can be used to train machine learning classifiers in order to classify malicious and benign packets. In this paper, we offer an efficient malware detection approach using classification algorithms in machine learning such as support vector machine, random forest and extreme gradient boosting. We employ an extensive feature selection process to reduce the dimensionality of the chosen dataset. The dataset is then split into training and testing sets. Machine learning algorithms are trained using the training set. These models are then evaluated against the testing set in order to assess their respective performances. We further attempt to tune the hyper parameters of the algorithms, in order to achieve better results. Random forest and extreme gradient boosting algorithms performed exceptionally well in our experiments, resulting in area under the curve values of 0.9928 and 0.9998 respectively. Our work demonstrates that malware traffic can be effectively classified using conventional machine learning algorithms and also shows the importance of dimensionality reduction in such classification problems. Keywords: Malware Detection, Extreme Gradient Boosting, Random Forest, Feature Selection.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
vardhmaan jain ◽  
Vikram Sharma ◽  
Agam Bansal ◽  
Cerise Kleb ◽  
Chirag Sheth ◽  
...  

Background: Post-transplant major adverse cardiovascular events (MACE) are amongst the leading cause of death amongst orthotopic liver transplant(OLT) recipients. Despite years of guideline directed therapy, there are limited data on predictors of post-OLT MACE. We assessed if machine learning algorithms (MLA) can predict MACE and all-cause mortality in patients undergoing OLT. Methods: We tested three MLA: support vector machine, extreme gradient boosting(XG-Boost) and random forest with traditional logistic regression for prediction of MACE and all-cause mortality on a cohort of consecutive patients undergoing OLT at our center between 2008-2019. The cohort was randomly split into a training (80%) and testing (20%) cohort. Model performance was assessed using c-statistic or AUC. Results: We included 1,459 consecutive patients with mean ± SD age 54.2 ± 13.8 years, 32% female who underwent OLT. There were 199 (13.6%) MACE and 289 (20%) deaths at a mean follow up of 4.56 ± 3.3 years. The random forest MLA was the best performing model for predicting MACE [AUC:0.78, 95% CI: 0.70-0.85] as well as mortality [AUC:0.69, 95% CI: 0.61-0.76], with all models performing better when predicting MACE vs mortality. See Table and Figure. Conclusion: Random forest machine learning algorithms were more predictive and discriminative than traditional regression models for predicting major adverse cardiovascular events and all-cause mortality in patients undergoing OLT. Validation and subsequent incorporation of MLA in clinical decision making for OLT candidacy could help risk stratify patients for post-transplant adverse cardiovascular events.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document